MA 741: Algebra I / Fall 2020 Homework assignment #1 Due Thursday 9/17/2020

- (0) Read and review: Dummit and Foote (DF) Chapters 0–3. You may skip 3.4 at this point.
- (1) Divisible groups and \mathbb{Q}/\mathbb{Z}
 - (a) DF section 2.4 exercise 19
 - (b) DF section 3.1 exercise 14
 - (c) DF section 3.1 exercise 15
- (2) Quotients of D_{2n} : DF section 3.1 exercise 34
- (3) Cauchy's theorem: DF section 3.2 exercise 9
- (4) Universal property of quotient groups: Let G be a group and $N \subseteq G$ a normal subgroup, with $\iota : N \hookrightarrow G$ the corresponding injection. Consider the universal property satisfied by a group Q defined in class:

There is a group homomorphism $\pi : G \to Q$ so that $\pi \circ \iota : N \to Q$ is the trivial homomorphism; and if any group X admits a homomorphism $f: G \to X$ with the property that $f \circ \iota : N \to X$ is the trivial map, then there is unique map $\alpha : Q \to X$ so that $f = \alpha \circ \pi$.

(a) Show that if a group Q satisfies this property, then Q is unique up to unique isomorphism in the following sense: If groups Q and Q' both satisfy this property, with $\pi: G \to Q$ and $\pi': G \to Q'$ the guaranteed-by-the-property maps, then there is a unique group isomorphism $\varphi: Q \to Q'$ that makes the diagram below commute.

$$Q \xrightarrow{\varphi}{\overset{G}{\longrightarrow}} Q'$$

- (b) Show that the quotient group G/N satisfies this universal property.
- (5) Universal property of products: Let I be a set of indices, and $\{G_i : i \in I\}$ a collection of groups. Let

$$G := \prod_{i \in I} G_i$$

be the direct product.

(a) Show that G satisfies the following universal property.

For each $i \in I$ there is map $\pi_i : G \to G_i$; and given any group X equipped with morphisms $f_i : X \to G_i$ for each $i \in I$, there is a unique group homomorphism $\beta : X \to G$ satisfying $f_i = \pi_i \circ \beta$ for each i.

(b) Consider the following "dual" universal property of a group F.

For each $i \in I$ there is a map $\iota_i : G_i \to F$, and given any group X equipped with homomorphisms $f_i : G_i \to X$, there is a unique group homomorphism $\alpha : F \to X$ satisfying $f_i = \alpha \circ \iota_i$ for each i.

Does the direct product G satisfy this second universal property? Either prove that it does or explain why not. (If you like, you may take I here to be a finite set, or even just consider $I = \{1, 2\}$.)

- (6) Action of S_n on \mathbb{R}^n : Fix $n \ge 1$, and let $\{e_1, \ldots, e_n\}$ be the standard basis for \mathbb{R}^n . Let $\sigma \in S_n$ be a permutation, and $(a_1, \ldots, a_n) = \sum_{i=1}^n a_i e_i$ a vector in \mathbb{R}^n .
 - (a) Which of the following define a left action of S_n on \mathbb{R}^n ?
 - (i) $\sigma \cdot \sum_{i} a_i e_i = \sum_{i} a_i e_{\sigma(i)}$
 - (ii) $\sigma \cdot \sum_{i} a_i e_i = \sum_{i} a_i e_{\sigma^{-1}(i)}$
 - (iii) $\sigma \cdot (a_1, \dots, a_n) = (a_{\sigma(1)}, \dots, a_{\sigma(n)})$
 - (iv) $\sigma \cdot (a_1, \dots, a_n) = (a_{\sigma^{-1}(1)}, \dots, a_{\sigma^{-1}(n)})$
 - (b) Consider the items from (6a) above that define a left action of S_n on \mathbb{R}^n . How do these actions compare?
 - (c) What can you say about the items from (6a) above that DO NOT define a left action of S_n on \mathbb{R}^n ?
- (7) Matrix representations of S_3 : A (finite-dimensional) matrix representation of a group G over a field K is a group homomorphism

$$\rho: G \to \operatorname{GL}_n(K)$$

for some $n \ge 1$. (See DF 1.4 for definitions if necessary.) We take $K = \mathbb{R}$ below.

(a) Recall that S_3 is isomorphic to the dihedral group D_6 , so that we can view S_3 as the group of linear automorphisms of the plane preserving an equilateral triangle centered at the origin. To fix ideas, let the triangle have vertices (1,0), $\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$ in \mathbb{R}^2 .

Express this action as an explicit matrix representation $\rho: S_3 \to \mathrm{GL}_2(\mathbb{R})$.

(b) The action of S_3 on \mathbb{R}^3 suggested in problem (6) is called the *permutation representation* of S_3 . Construct this representation

$$\pi: S_3 \to \mathrm{GL}_3(\mathbb{R})$$

explicitly in terms of matrices.

- (c) Show that the line ℓ spanned by $v = (1, 1, 1) \in \mathbb{R}^3$ is *stable* under the action of S_3 given by π (that is, if $x \in \ell$ and $\sigma \in S_3$, then $\sigma x \in \ell$ as well).
- (d) Find a complement P to the line ℓ (i.e., a plane P in \mathbb{R}^3 containing the origin but not containing ℓ) that is also stable under the action of S_3 given by π .
- (e) Choosing a convenient basis for P, express the action of S_3 given by π on P as an explicit matrix representation

$$\sigma: S_3 \to \mathrm{GL}_2(\mathbb{R}).$$

(f) You now have two dimension-2 matrix representations of S_3 : ρ from (7a) and σ from (7e). Compare them!