MA 741: Algebra I / Fall 2020

Homework assignment \#1
Due Thursday 9/17/2020
(0) Read and review: Dummit and Foote (DF) Chapters 0-3. You may skip 3.4 at this point.
(1) Divisible groups and \mathbb{Q} / \mathbb{Z}
(a) DF section 2.4 exercise 19
(b) DF section 3.1 exercise 14
(c) DF section 3.1 exercise 15
(2) Quotients of $D_{2 n}$: DF section 3.1 exercise 34
(3) Cauchy's theorem: DF section 3.2 exercise 9
(4) Universal property of quotient groups: Let G be a group and $N \subseteq G$ a normal subgroup, with $\iota: N \hookrightarrow G$ the corresponding injection. Consider the universal property satisfied by a group Q defined in class:

There is a group homomorphism $\pi: G \rightarrow Q$ so that $\pi \circ \iota: N \rightarrow Q$ is the trivial homomorphism; and if any group X admits a homomorphism $f: G \rightarrow X$ with the property that $f \circ \iota: N \rightarrow X$ is the trivial map, then there is unique map $\alpha: Q \rightarrow X$ so that $f=\alpha \circ \pi$.
(a) Show that if a group Q satisfies this property, then Q is unique up to unique isomorphism in the following sense: If groups Q and Q^{\prime} both satisfy this property, with $\pi: G \rightarrow Q$ and $\pi^{\prime}: G \rightarrow Q^{\prime}$ the guaranteed-by-the-property maps, then there is a unique group isomorphism $\varphi: Q \rightarrow Q^{\prime}$ that makes the diagram below commute.

(b) Show that the quotient group G / N satisfies this universal property.
(5) Universal property of products: Let I be a set of indices, and $\left\{G_{i}: i \in I\right\}$ a collection of groups. Let

$$
G:=\prod_{i \in I} G_{i}
$$

be the direct product.
(a) Show that G satisfies the following universal property.

For each $i \in I$ there is map $\pi_{i}: G \rightarrow G_{i}$; and given any group X equipped with morphisms $f_{i}: X \rightarrow G_{i}$ for each $i \in I$, there is a unique group homomorphism $\beta: X \rightarrow G$ satisfying $f_{i}=\pi_{i} \circ \beta$ for each i.
(b) Consider the following "dual" universal property of a group F.

For each $i \in I$ there is a map $\iota_{i}: G_{i} \rightarrow F$, and given any group X equipped with homomorphisms $f_{i}: G_{i} \rightarrow X$, there is a unique group homomorphism $\alpha: F \rightarrow X$ satisfying $f_{i}=\alpha \circ \iota_{i}$ for each i.

Does the direct product G satisfy this second universal property? Either prove that it does or explain why not. (If you like, you may take I here to be a finite set, or even just consider $I=\{1,2\}$.)
(6) Action of S_{n} on $\mathbb{R}^{n}:$ Fix $n \geq 1$, and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis for \mathbb{R}^{n}. Let $\sigma \in S_{n}$ be a permutation, and $\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i} e_{i}$ a vector in \mathbb{R}^{n}.
(a) Which of the following define a left action of S_{n} on \mathbb{R}^{n} ?
(i) $\sigma \cdot \sum_{i} a_{i} e_{i}=\sum_{i} a_{i} e_{\sigma(i)}$
(ii) $\sigma \cdot \sum_{i} a_{i} e_{i}=\sum_{i} a_{i} e_{\sigma^{-1}(i)}$
(iii) $\sigma \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$
(iv) $\sigma \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a_{\sigma^{-1}(1)}, \ldots, a_{\sigma^{-1}(n)}\right)$
(b) Consider the items from (6a) above that define a left action of S_{n} on \mathbb{R}^{n}. How do these actions compare?
(c) What can you say about the items from (6a) above that DO NOT define a left action of S_{n} on \mathbb{R}^{n} ?
(7) Matrix representations of S_{3} : A (finite-dimentional) matrix representation of a group G over a field K is a group homomorphism

$$
\rho: G \rightarrow \mathrm{GL}_{n}(K)
$$

for some $n \geq 1$. (See DF 1.4 for definitions if necessary.) We take $K=\mathbb{R}$ below.
(a) Recall that S_{3} is isomorphic to the dihedral group D_{6}, so that we can view S_{3} as the group of linear automorphisms of the plane preserving an equilateral triangle centered at the origin. To fix ideas, let the triangle have vertices $(1,0),\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ in \mathbb{R}^{2}.
Express this action as an explicit matrix representation $\rho: S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$.
(b) The action of S_{3} on \mathbb{R}^{3} suggested in problem (6) is called the permutation representation of S_{3}. Construct this representation

$$
\pi: S_{3} \rightarrow \mathrm{GL}_{3}(\mathbb{R})
$$

explicitly in terms of matrices.
(c) Show that the line ℓ spanned by $v=(1,1,1) \in \mathbb{R}^{3}$ is stable under the action of S_{3} given by π (that is, if $x \in \ell$ and $\sigma \in S_{3}$, then $\sigma x \in \ell$ as well).
(d) Find a complement P to the line ℓ (i.e., a plane P in \mathbb{R}^{3} containing the origin but not containing ℓ) that is also stable under the action of S_{3} given by π.
(e) Choosing a convenient basis for P, express the action of S_{3} given by π on P as an explicit matrix representation

$$
\sigma: S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{R})
$$

(f) You now have two dimension-2 matrix representations of $S_{3}: \rho$ from (7a) and σ from (7e). Compare them!

