MA 741: Algebra I / Fall 2020
 Homework assignment \#6
 Due Wednesday, November 4

To turn in your work, please email your well-titled document (title should identify you, this course, and the HW set number) to buma741fall2020@gmail.com with "HW 6 " in the subject line. Please indicate with whom you worked on the problem set.
(1) Consider the rings $\mathbb{F}_{3}[x] /\left(x^{2}+1\right), \mathbb{F}_{3}[y] /\left(y^{2}+2 y+1\right), \mathbb{F}_{3}[z] /\left(z^{2}+2 z+2\right), \mathbb{F}_{3}[t] /\left(t^{2}+2\right)$. Which, if any, are fields? Which, if any, have zero divisors? Which, if any, have nilpotent elements? Classify them up to isomorphism: for each pair either construct an explicit isomorphism or explain why none exists. Are there any additional ring homomorphisms between them?
(2) Recall that an element α in a commutative ring A is a root of a polynomial $f(x) \in A[x]$ if $f(\alpha)=0$. In class we showed that α is a root of $f \Longleftrightarrow(x-\alpha) \mid f$.
(a) Let K be a field. Show that a polynomial of degree n in $K[x]$ can have no more than n distinct roots in K.
(b) Give an example of a ring A and a polynomial in $A[x]$ of degree $n \geq 1$ with more than n roots in A. Are there any such examples when A is a domain?
(c) Let K be a field again, and $G \subseteq K^{\times}$be a finite group. Show that G is cyclic. (Hint: Let m be the maximal (multiplicative) order of any element of G, and consider polynomial $x^{m}-1 \in K[x]$.)
(d) Let F be a finite field. Show that the underlying additive group structure of F must be $(\mathbb{Z} / p \mathbb{Z})^{n}$ for some prime p and some $n \geq 1$. Show that $F \cong \mathbb{F}_{p}[x] /(f(x))$ for some prime p and irreducible polynomial $f(x)$.
(3) Rings of fractions (Aluffi exercise V.4.7): Let A be a commutative ring. Recall that a subset $S \subseteq A$ is called a multiplicatively closed subset if it's a submonoid of (A, \cdot) : that is, $1 \in S$ and $s, t \in S \Longrightarrow s t \in S$.

Let $S \subseteq A$ be a multiplicatively closed subset. Define a relation on $A \times S$ by

$$
(a, s) \sim\left(a^{\prime}, s^{\prime}\right) \text { if there exists } t \in S \text { such that } t\left(a s^{\prime}-a^{\prime} s\right)=0
$$

(a) Show that \sim is an equivalence relation.
(b) Is the relation $\stackrel{*}{\sim}$ on $A \times S$ given by $(a, s) \stackrel{*}{\sim}\left(a^{\prime}, s^{\prime}\right)$ if $a s^{\prime}=a^{\prime} s$ an equivalence relation as well? Explain.
(c) Denote by $\frac{a}{s}$ the equivalence class of (a, s) under \sim. Show that the binary operations

$$
\frac{a}{s}+\frac{a^{\prime}}{s^{\prime}}=\frac{a s^{\prime}+a^{\prime} s}{s s^{\prime}} \quad \text { and } \quad \frac{a}{s} \cdot \frac{a^{\prime}}{s^{\prime}}=\frac{a a^{\prime}}{s s^{\prime}}
$$

are well defined.

Write $S^{-1} A$ for the set of equivalence classes $(A \times S) / \sim$. Convince yourself that $S^{-1} A$ is a commutative ring, and that the map $\ell: a \mapsto \frac{a}{1}$ defines a ring homomorphism $\ell: A \longrightarrow S^{-1} A$ with $\ell(S) \subset\left(S^{-1} A\right)^{\times}$.
(d) Show that $S^{-1} A$ satisfies the following universal property: if $f: A \longrightarrow B$ is a ring homomorphism from A to a commutative ring B with $f(S) \subset B^{\times}$, there is a unique ring homomorphism $\alpha: S^{-1} A \longrightarrow B$ factoring f : that is, satisfying $f=\alpha \circ \ell$.
(e) Show that $S^{-1} A$ is the zero ring if and only if $0 \in S$. If A is a domain and $0 \notin S$, show that $S^{-1} A$ is a domain.
(4) Maps on Specs induced by a ring homomorphism: Let $\varphi: A \longrightarrow B$ be a homomorphism of commutative rings. If \mathfrak{b} is an ideal of B, convince yourself that $\varphi^{-1}(\mathfrak{b})$ is an ideal of A. The ideal $\varphi^{-1}(\mathfrak{b})$ is sometimes denoted $\mathfrak{b}^{\text {c }}$, the contraction of \mathfrak{b}. If \mathfrak{a} is an ideal of A, write $\mathfrak{a}^{\mathrm{e}}$ for the ideal of B generated by $\varphi(\mathfrak{a})$: this is the extension of \mathfrak{a}.
(a) If \mathfrak{b} is a prime ideal of B, show that $\mathfrak{b}^{\boldsymbol{c}}$ is a prime ideal of A. If \mathfrak{b} is maximal in B, must $\mathfrak{b}^{\text {c }}$ be maximal? Explain: that is, prove this or give a counterexample.

Let $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$. From (4a), we see that φ induces a map $\varphi^{*}: Y \longrightarrow X$ defined by $\varphi^{*}(\mathfrak{q}):=\mathfrak{q}^{\text {c }}$ for a prime ideal $\mathfrak{q} \subset B$.
(See problem 5 on HW $\# 5$ for the definition of $\operatorname{Spec} A$, its subset $V(\mathfrak{a})$ for an ideal $\mathfrak{a} \subseteq A$, and its Zariski topology.)
(b) If \mathfrak{a} is an ideal of A, show that $\left(\varphi^{*}\right)^{-1}(V(\mathfrak{a}))=V\left(\mathfrak{a}^{\mathrm{e}}\right)$. Conclude that φ^{*} is a continuous map of topological spaces.
(c) If φ is surjective, show that φ^{*} is a homeomorphism of Y onto the closed subset $V(\operatorname{ker} \varphi)$ of X. (That is, show that φ^{*} is one-to-one with image $V(\operatorname{ker} \varphi)$, and closed subsets of Y map to closed subsets of $V(\operatorname{ker} \varphi)$.)
(d) If $Z \subseteq X$ and \mathfrak{a} is an ideal of A, show that $Z \subseteq V(\mathfrak{a})$ if and only if $\mathfrak{a} \subseteq \bigcap_{\mathfrak{p} \in Z} \mathfrak{p}$. Conclude that

$$
\bar{Z}=V\left(\bigcap_{\mathfrak{p} \in Z} \mathfrak{p}\right)
$$

Here \bar{Z} is the closure of Z in X, that is, the intersection of all the closed subsets containing Z.
(e) If \mathfrak{b} is an ideal of B, show that $\overline{\varphi^{*}(V(\mathfrak{b}))}=V\left(\mathfrak{b}^{\mathrm{c}}\right)$.

Conclude that if φ is injective, then $\varphi^{*}(Y)$ is dense in X : that is, $\overline{\varphi^{*}(Y)}=X$.
This is a variation on part of AM exercise 1.21.
(5) More rings of fractions: Continue the notation of (3): A is a commutative ring, $S \subset A$ is a multiplicatively closed subset, and $\ell: A \longrightarrow S^{-1} A$ is the map $a \mapsto \frac{a}{1}$.
(a) If \mathfrak{a} is an ideal of A with $\mathfrak{a} \cap S=\varnothing$, show that $\mathfrak{a}^{\mathrm{e}}$ is a proper ideal of $S^{-1} A$. Note that $\mathfrak{a}^{\mathrm{e}}$ is the set of equivalence classes of fractions of the form $\frac{a}{s}$ for $a \in \mathfrak{a}$ and $s \in S$.
(b) Conversely, if \mathfrak{b} is a proper ideal of $S^{-1} A$, show that $\mathfrak{b}^{\mathrm{c}} \cap S=\varnothing$.
(c) Show that extension and contraction along ℓ gives a one-to-one correspondence between prime ideals \mathfrak{p} of A with $\mathfrak{p} \cap S=\varnothing$ and prime ideals of $S^{-1} A$.

If $\mathfrak{p} \subset A$ is a prime ideal, verify that $S=A-\mathfrak{p}$ is multiplicatively closed. In this case the ring of fractions $S^{-1} A$ is the localization of A at \mathfrak{p}, often denoted $A_{\mathfrak{p}}$.
(d) Describe the localization $\mathbb{Z}_{(p)}$ for a prime number p. What are its prime ideals? What is the fraction field of $\mathbb{Z}_{(p)}$?
(e) Same questions for $S^{-1} \mathbb{Z}$ for $S=\left\{p^{n}: n \geq 0\right\}$. Again, p is a prime.
(6) Extending characters from subgroups: Let H be a normal subgroup of a group G and $\psi: H \longrightarrow \mathbb{C}^{\times}$is a character. For $g \in G$, consider the map

$$
{ }^{g} \psi: H \longrightarrow \mathbb{C}^{\times}
$$

given by ${ }^{g} \psi(x)=\psi\left(g^{-1} x g\right)$.
(a) Show that ${ }^{g} \psi$ is a character of H, and only depends on the image of g in G / H.
(b) Suppose that G / H is a finite cyclic group. Show that ψ extends to a character of G if and only if $\psi={ }^{g} \psi$ for all $g \in G$.
(Hint: Suppose G / H has order n and is generated by the image of $x \in G$. Let $\zeta \in \mathbb{C}^{\times}$be any $n^{\text {th }}$ root of $\psi\left(x^{n}\right)$. Define $\widetilde{\psi}: G \longrightarrow \mathbb{C}^{\times}$by $\widetilde{\psi}\left(x^{i} h\right)=z^{i} \psi(h)$ for any $h \in H$ and $0 \leq i<n$. When is $\widetilde{\psi}$ a character extending ψ ?)

Now let G be a finite abelian group.
(c) If $H \subseteq G$ is a subgroup, show that any complex character of H extends to a character of G, in $(G: H)$ different ways.
(d) If $g \in G$ is not the identity element, show that there exists a character $\chi \in \hat{G}$ with $\chi(g) \neq 1$.
(e) Let $\hat{\hat{G}}$, the "double dual" of G, be the set of complex characters of \hat{G}. Show that the map ev : $G \longrightarrow \hat{\hat{G}}$ sending g to the evaluation-at- g character $\mathrm{ev}_{g}: \hat{G} \longrightarrow \mathbb{C}^{\times}$, which maps $\chi \in \hat{G}$ to $\operatorname{ev}_{g}(\chi):=\chi(g)$, is an isomorphism of finite abelian groups. Unlike the isomorphism between G and \hat{G} that you constructed in 5c of HW \#3, the isomorphism ev : $G \longrightarrow \hat{\hat{G}}$ here is canonical: it does not depend on arbitrary choices!

