MA 741: Algebra I / Fall 2020 Homework assignment #6 Due Wednesday, November 4

To turn in your work, please email your well-titled document (title should identify you, this course, and the HW set number) to buma741fall2020@gmail.com with "HW 6" in the subject line. Please indicate with whom you worked on the problem set.

- (1) Consider the rings $\mathbb{F}_3[x]/(x^2+1)$, $\mathbb{F}_3[y]/(y^2+2y+1)$, $\mathbb{F}_3[z]/(z^2+2z+2)$, $\mathbb{F}_3[t]/(t^2+2)$. Which, if any, are fields? Which, if any, have zero divisors? Which, if any, have nilpotent elements? Classify them up to isomorphism: for each pair either construct an explicit isomorphism or explain why none exists. Are there any additional ring homomorphisms between them?
- (2) Recall that an element α in a commutative ring A is a root of a polynomial $f(x) \in A[x]$ if $f(\alpha) = 0$. In class we showed that α is a root of $f \iff (x \alpha) \mid f$.
 - (a) Let K be a field. Show that a polynomial of degree n in K[x] can have no more than n distinct roots in K.
 - (b) Give an example of a ring A and a polynomial in A[x] of degree $n \ge 1$ with more than n roots in A. Are there any such examples when A is a domain?
 - (c) Let K be a field again, and $G \subseteq K^{\times}$ be a finite group. Show that G is cyclic. (*Hint*: Let m be the maximal (multiplicative) order of any element of G, and consider polynomial $x^m - 1 \in K[x]$.)
 - (d) Let F be a finite field. Show that the underlying additive group structure of F must be $(\mathbb{Z}/p\mathbb{Z})^n$ for some prime p and some $n \ge 1$. Show that $F \cong \mathbb{F}_p[x]/(f(x))$ for some prime p and irreducible polynomial f(x).
- (3) **Rings of fractions** (Aluffi exercise V.4.7): Let A be a commutative ring. Recall that a subset $S \subseteq A$ is called a *multiplicatively closed* subset if it's a submonoid of (A, \cdot) : that is, $1 \in S$ and $s, t \in S \implies st \in S$.

Let $S \subseteq A$ be a multiplicatively closed subset. Define a relation on $A \times S$ by

$$(a, s) \sim (a', s')$$
 if there exists $t \in S$ such that $t(as' - a's) = 0$.

- (a) Show that \sim is an equivalence relation.
- (b) Is the relation $\stackrel{*}{\sim}$ on $A \times S$ given by $(a, s) \stackrel{*}{\sim} (a', s')$ if as' = a's an equivalence relation as well? Explain.
- (c) Denote by $\frac{a}{s}$ the equivalence class of (a, s) under \sim . Show that the binary operations

$$\frac{a}{s} + \frac{a'}{s'} = \frac{as' + a's}{ss'} \qquad \text{and} \qquad \frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'}$$

are well defined.

Write $S^{-1}A$ for the set of equivalence classes $(A \times S)/\sim$. Convince yourself that $S^{-1}A$ is a commutative ring, and that the map $\ell : a \mapsto \frac{a}{1}$ defines a ring homomorphism $\ell : A \longrightarrow S^{-1}A$ with $\ell(S) \subset (S^{-1}A)^{\times}$.

- (d) Show that $S^{-1}A$ satisfies the following universal property: if $f : A \longrightarrow B$ is a ring homomorphism from A to a commutative ring B with $f(S) \subset B^{\times}$, there is a unique ring homomorphism $\alpha : S^{-1}A \longrightarrow B$ factoring f: that is, satisfying $f = \alpha \circ \ell$.
- (e) Show that $S^{-1}A$ is the zero ring if and only if $0 \in S$. If A is a domain and $0 \notin S$, show that $S^{-1}A$ is a domain.
- (4) Maps on Specs induced by a ring homomorphism: Let φ : A → B be a homomorphism of commutative rings. If b is an ideal of B, convince yourself that φ⁻¹(b) is an ideal of A. The ideal φ⁻¹(b) is sometimes denoted b^c, the contraction of b. If a is an ideal of A, write a^e for the ideal of B generated by φ(a): this is the extension of a.
 - (a) If \mathfrak{b} is a prime ideal of B, show that \mathfrak{b}^c is a prime ideal of A. If \mathfrak{b} is maximal in B, must \mathfrak{b}^c be maximal? Explain: that is, prove this or give a counterexample.

Let $X = \operatorname{Spec} A$ and $Y = \operatorname{Spec} B$. From (4a), we see that φ induces a map $\varphi^* : Y \longrightarrow X$ defined by $\varphi^*(\mathfrak{q}) := \mathfrak{q}^c$ for a prime ideal $\mathfrak{q} \subset B$.

(See problem 5 on HW #5 for the definition of Spec A, its subset $V(\mathfrak{a})$ for an ideal $\mathfrak{a} \subseteq A$, and its Zariski topology.)

- (b) If \mathfrak{a} is an ideal of A, show that $(\varphi^*)^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$. Conclude that φ^* is a continuous map of topological spaces.
- (c) If φ is surjective, show that φ^* is a homeomorphism of Y onto the closed subset $V(\ker \varphi)$ of X. (That is, show that φ^* is one-to-one with image $V(\ker \varphi)$, and closed subsets of Y map to closed subsets of $V(\ker \varphi)$.)
- (d) If $Z \subseteq X$ and \mathfrak{a} is an ideal of A, show that $Z \subseteq V(\mathfrak{a})$ if and only if $\mathfrak{a} \subseteq \bigcap_{\mathfrak{p} \in Z} \mathfrak{p}$. Conclude that

$$\overline{Z} = V\big(\bigcap_{\mathfrak{p}\in Z}\mathfrak{p}\big).$$

Here \overline{Z} is the *closure* of Z in X, that is, the intersection of all the closed subsets containing Z.

(e) If \mathfrak{b} is an ideal of B, show that $\overline{\varphi^*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$. Conclude that if φ is injective, then $\varphi^*(Y)$ is *dense* in X: that is, $\overline{\varphi^*(Y)} = X$.

This is a variation on part of AM exercise 1.21.

- (5) More rings of fractions: Continue the notation of (3): A is a commutative ring, $S \subset A$ is a multiplicatively closed subset, and $\ell : A \longrightarrow S^{-1}A$ is the map $a \mapsto \frac{a}{1}$.
 - (a) If \mathfrak{a} is an ideal of A with $\mathfrak{a} \cap S = \emptyset$, show that \mathfrak{a}^{e} is a proper ideal of $S^{-1}A$. Note that \mathfrak{a}^{e} is the set of equivalence classes of fractions of the form $\frac{a}{s}$ for $a \in \mathfrak{a}$ and $s \in S$.
 - (b) Conversely, if \mathfrak{b} is a proper ideal of $S^{-1}A$, show that $\mathfrak{b}^{c} \cap S = \emptyset$.
 - (c) Show that extension and contraction along ℓ gives a one-to-one correspondence between prime ideals \mathfrak{p} of A with $\mathfrak{p} \cap S = \emptyset$ and prime ideals of $S^{-1}A$.

If $\mathfrak{p} \subset A$ is a prime ideal, verify that $S = A - \mathfrak{p}$ is multiplicatively closed. In this case the ring of fractions $S^{-1}A$ is the *localization of* A at \mathfrak{p} , often denoted $A_{\mathfrak{p}}$.

- (d) Describe the localization $\mathbb{Z}_{(p)}$ for a prime number p. What are its prime ideals? What is the fraction field of $\mathbb{Z}_{(p)}$?
- (e) Same questions for $S^{-1}\mathbb{Z}$ for $S = \{p^n : n \ge 0\}$. Again, p is a prime.
- (6) Extending characters from subgroups: Let H be a normal subgroup of a group G and $\psi: H \longrightarrow \mathbb{C}^{\times}$ is a character. For $g \in G$, consider the map

$${}^{g}\psi:H\longrightarrow\mathbb{C}^{\succ}$$

given by ${}^{g}\psi(x) = \psi(g^{-1}xg).$

- (a) Show that ${}^{g}\psi$ is a character of H, and only depends on the image of g in G/H.
- (b) Suppose that G/H is a finite cyclic group. Show that ψ extends to a character of G if and only if ψ = ^gψ for all g ∈ G.
 (*Hint*: Suppose G/H has order n and is generated by the image of x ∈ G. Let ζ ∈ C[×] be any nth root of ψ(xⁿ). Define ψ̃ : G → C[×] by ψ̃(xⁱh) = zⁱψ(h) for any h ∈ H and 0 ≤ i < n. When is ψ̃ a character extending ψ?)

Now let G be a finite abelian group.

- (c) If $H \subseteq G$ is a subgroup, show that any complex character of H extends to a character of G, in (G : H) different ways.
- (d) If $g \in G$ is not the identity element, show that there exists a character $\chi \in \hat{G}$ with $\chi(g) \neq 1$.
- (e) Let \hat{G} , the "double dual" of G, be the set of complex characters of \hat{G} . Show that the map ev : $G \longrightarrow \hat{G}$ sending g to the evaluation-at-g character ev $_g : \hat{G} \longrightarrow \mathbb{C}^{\times}$, which maps $\chi \in \hat{G}$ to $\operatorname{ev}_g(\chi) := \chi(g)$, is an isomorphism of finite abelian groups.

Unlike the isomorphism between G and \hat{G} that you constructed in 5c of HW #3, the isomorphism ev : $G \longrightarrow \hat{G}$ here is *canonical*: it does not depend on arbitrary choices!