MA 741: Algebra I / Fall 2020

Homework assignment \#7
Due week of November 20, 2020
To turn in your work, please email your well-titled document (title should identify you, this course, and the HW set number) to buma741fall2020@gmail.com with "HW 7" in the subject line. Please indicate with whom you worked on the problem set.
(1) Exactness of Hom-functors: Let R and S be rings. A covariant additive functor $\mathcal{F}: R-\bmod \rightarrow S-\bmod$ is called left exact if given an exact sequence

$$
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C
$$

in R-mod, the sequence

$$
0 \rightarrow \mathcal{F}(A) \xrightarrow{\mathcal{F}(\alpha)} \mathcal{F}(B) \xrightarrow{\mathcal{F}(\beta)} \mathcal{F}(C)
$$

is exact in S-mod. Similarly, such an \mathcal{F} is right exact if if given exact sequence

$$
A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0
$$

in R-mod, the sequence

$$
\mathcal{F}(A) \xrightarrow{\mathcal{F}(\alpha)} \mathcal{F}(B) \xrightarrow{\mathcal{F}(\beta)} \mathcal{F}(C) \rightarrow 0
$$

is exact in S-mod. Finally \mathcal{F} is exact if it is both left exact and right exact (equivalently, it transforms short exact sequences to short exact sequences).
(a) For an R-module X, consider the functor $h_{X}=\operatorname{Hom}_{R}(X,-)$ from R-modules to abelian groups. Show that h_{X} is left exact.
(b) Furthermore, show that a sequence

$$
0 \rightarrow M \rightarrow N \rightarrow P
$$

of R-modules is exact if and only if

$$
0 \rightarrow \operatorname{Hom}_{R}(X, M) \rightarrow \operatorname{Hom}_{R}(X, N) \rightarrow \operatorname{Hom}_{R}(X, P)
$$

is exact for every R-module X.
(c) Now consider the functor $h^{X}=\operatorname{Hom}_{R}(-, X)$, which is covariant as a functor from R - $\mathbf{m o d}^{\text {op }}$ to $\mathbf{A b}$. Show that h^{X} is also left exact. What does this mean here?
(d) Show that a sequence

$$
M \rightarrow N \rightarrow P \rightarrow 0
$$

of R-modules is exact if and only if

$$
0 \rightarrow \operatorname{Hom}_{R}(P, X) \rightarrow \operatorname{Hom}_{R}(N, X) \rightarrow \operatorname{Hom}_{R}(M, X)
$$

is exact for every R-module X.

(2) Direct limits.

(a) Read Atiyah-Macdonald exercise 14 on pp. 32-33. There is nothing to show. Note that the setup is equivalent to taking a (directed) poset category I and considering a functor \mathcal{F} from I to A-modules, with $M_{i}=\mathcal{F}(i)$.
(b) Atiyah-Macdonald exercise 15 on p. 33.
(c) Atiyah-Macdonald exercise 16 on p. 33.
(d) Consider the poset \mathbb{Z}^{+}with the "divides" relation. Show that this poset is directed. For each n, consider the abelian group $\mathbb{Z} / n \mathbb{Z}$; whenever $n \mid m$, let $\mu_{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ be the map sending 1 to $\frac{m}{n}$. What is $\underset{\longrightarrow}{\lim } \mathbb{Z} / n \mathbb{Z}$?
Hint: Think of $\mathbb{Z} / n \mathbb{Z}$ as $\frac{1}{n} \mathbb{Z} / \mathbb{Z}$.
(3) Some tensor products.
(a) Compute $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$ for $m, n \geq 1$.
(b) Compute $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$.
(c) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}=\mathbb{Q}$.
(d) Let G be a finitely generated abelian group, and p a prime. Describe $G \otimes_{\mathbb{Z}} \mathbb{Z} / p \mathbb{Z}$ in terms of the elementary divisor decomposition of G.
(e) Let G be a finite abelian group, and p^{k} the largest power of a prime p dividing $|G|$. What is $G \otimes_{\mathbb{Z}} \mathbb{Z} / p^{k} \mathbb{Z}$?
(4) Group representations: A representation of a group G on a vector space V over a field K is an action of G on V by K-linear transformations. In other words, a representation of G over K is a pair (ρ, V), where V is a K-vector space and

$$
\rho: G \rightarrow \mathrm{GL}_{K}(V)
$$

is a group homomorphism. Sometimes the ρ is omitted from notation. A finitedimensional representation V together with a basis of V is a matrix representation (see problem 7 on HW \#1).

Let (ρ, V) and (π, W) be two representations of G over K. A homomorphism from (ρ, V) to (σ, W) is a K-linear transformation $f: V \rightarrow W$ that is G-equivariant: that is, for each $g \in G$, the following diagram commutes:

A homomorphism of representations of G (or G-representations) is an isomorphism if it is an isomorphism of underlying vector spaces.

If (ρ, V) is a representation of G over K, then a K-linear subspace W of V is a subrepresentation if it is stable by the action of G. (Such a G-stable W is also sometimes called G-invariant, but note that the action of G on W need not be trivial.) The representation (ρ, V) is irreducible if it has no proper subrepresentations. It is decomposable if $V=W \oplus U$, where $W, U \subset V$ are proper subrepresentations; otherwise it is indecomposable. It is totally decomposable or completely reducible if V is an (internal) direct sum of irreducible subrepresentations: $V=\bigoplus_{i} W_{i}$, where $W_{i} \subseteq V$ are irreducible.

Below we take $K=\mathbb{C}$.
(a) If $f: V \rightarrow W$ is a homomorphism of G-representations, then $\operatorname{ker} f$ is a subrepresentation of V and $\operatorname{im} f$ is a subrepresentation of W.
(b) If W is a subrepresentation of a representation (ρ, V) of a group G, then the quotient space V / W carries a representation of G inherited from V, and the projection $V \rightarrow V / W$ is a homomorphism of G-representations.
(c) Show that the map $\mathbb{Z} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ given by $1 \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ defines a reducible but not decomposable representation. What can you say more generally about the family of maps $1 \mapsto\left(\begin{array}{cc}\alpha & 1 \\ 0 & 1\end{array}\right)$ for any $\alpha \in \mathbb{C}^{\times}$?
(d) Let (ρ, V) be a finite-dimensional representation of a finite group G, and let $W \subset V$ be a subrepresentation. Show W has a complement in V : that is, show that there is another subrepresentation $U \subset V$ with $V=W \oplus U$.
To do this, let U_{0} be any vector-space complement to W (that is, U_{0} need not be G-stable) and let $\pi_{0}: V \rightarrow W$ be the projection of V onto W with kernel U_{0}. Said another way, π_{0} be any left inverse (retraction) of the inclusion $\iota: W \hookrightarrow V$ as complex vector spaces, corresponding to any splitting of the exact sequence

$$
\begin{equation*}
0 \rightarrow W \xrightarrow{\iota} V \longrightarrow V / W \longrightarrow 0 \tag{1}
\end{equation*}
$$

of \mathbb{C}-vector spaces. (Problem 3 on HW $\# 3$ may be helpful.)
Show that

$$
\pi:=\frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi_{0} \circ \rho\left(g^{-1}\right)
$$

is a G-equivariant left inverse of ι : that is, a splitting of (1) as G-representations. Why does this mean that W has a complement in V ?
(e) Show that any complex finite-dimensional representation of a finite group is completely reducible. Would your argument still work for $K=\mathbb{R}$? For $K=\mathbb{Q}$? For $K=\mathbb{F}_{p}$?
(5) Group algebras: Let A be a commutative ring and G a group. We construct a new ring $A[G]$. As a A-module, this ring is free with basis $\{g: g \in G\}$ indexed by the elements of G : that is, elements of $A[G]$ are formal linear combinations $\sum_{g \in G} a_{g} g$ with only finitely many of the coefficients a_{g} nonzero. Define multiplication via $g \cdot h=g h$ and extend A-bilinearly. Convince yourself that $A[G]$ is an A-algebra, called the group algebra of G over A. The elements g of $A[G]$ are the group-like elements. What is the multiplicative identity of $A[G]$? Is $A[G]$ commutative?
(a) Show that $A[\mathbb{Z} / n \mathbb{Z}] \cong A[x] /\left(x^{n}-1\right)$. Show that $A[\mathbb{Z}] \cong A\left[x, x^{-1}\right]$, the ring of Laurent polynomials over A.
(b) Is $\mathbb{R}\left[Q_{8}\right]$ isomorphic to the division algebra of real Hamiltonians \mathbb{H} ? Prove or explain.
(c) Show that association $G \rightsquigarrow \mathbb{Z}[G]$ is a functor Group \rightarrow Ring, and is left adjoint to the group-of-units functor taking a ring R to R^{\times}.
(d) Let K be a field. If (ρ, V) is a representation of G over K, show that V has the structure of a $K[G]$-module via $g \cdot v:=\rho(g) v$. Conversely, show that any $K[G]$-module is a representation of G over K. Show that there is an equivalence of categories between the category of $K[G]$-modules and the category of representations of G over K.

Considering $K[G]$ as a (left) module over itself, we see that it carries a permutation representation of G : this is the (left) regular representation.
(e) Now let $K=\mathbb{C}$, and assume that G is a finite group. Let $\chi: G \rightarrow \mathbb{C}^{\times}$be a character. Find a complex line in in the \mathbb{C}-vector space $\mathbb{C}[G]$ on which G acts by χ. How many different such lines are there?

