Decision Trees and Random Forests

Reference: Leo Breiman,

http://www.stat.berkeley.edu/~breiman/RandomForests

1. Decision trees

Example (Guerts, Fillet, et al., Bioinformatics 2005):

Patients to be classified: normal vs. diseased

Decision trees

Classification of biomarker data: large number of values (e.g., microarray or mass spectrometry analysis of biological sample)

Decision trees

Mass spectrometry parameters or gene expression parameters (around 15k values)

A1	A2		An	Class	
0.3	28.34		123	Norma	
-123	0		17		
56	-123		-23	Norma	
***	***	***	***	Disease	
89	-123		12	Disease	

Given new patient with biomarker data, is s/he normal or ill?

Decision trees

Needed: selection of relevant variables from many

Number n of known examples in $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ is small (characteristic of data mining problems)

Assume we have for each biological sample a feature vector \mathbf{x} , and will classify it:

diseased: y = 1; normal: y = -1.

Goal: find function $f(\mathbf{x}) \approx y$ which predicts y from \mathbf{x} .

Decision trees

How to estimate error of $f(\mathbf{x})$ and avoid over-fitting the small dataset D?

Use cross-validation to test predictor $f(\mathbf{x})$ in an unexamined part of the sample D.

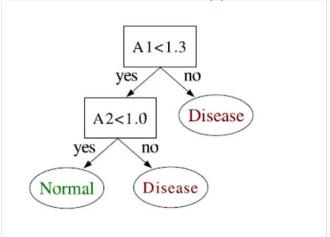
For biological sample, feature vector $\mathbf{x} = (x_1, \dots, x_d)$ consists of *features* (or *biomarkers* or *attributes*) $x_i = A_i$ describing the biological sample from which \mathbf{x} is obtained.

The decision tree approach

Decision tree approach to finding predictor $f(\mathbf{x}) = y$ based on data set D:

- \oplus form a tree whose nodes are attributes $x_i = A_i$ in **x**
- igoplus decide which attributes A_i to look at first in predicting y from ${\bf x}$ find those with highest information gain place these at top of tree
- then use recursion to form sub-trees based on attributes not used in the higher nodes:

The decision tree approach



Advantages: interpretable, easy to use, scalable, robust

Example 1 (Moore): UCI data repository (http://www.ics.uci.edu/~mlearn/MLRepository.html)

MPG ratings of cars:

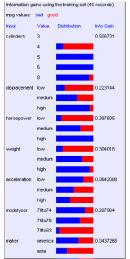
Goal: predict MPG rating of a car from a set of attributes A_i

Examples (each row is attribute set for a sample car):

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

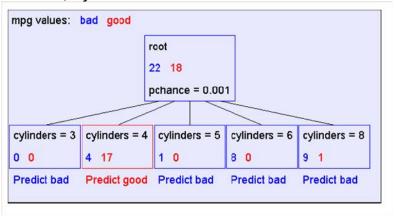
R. Quinlan

Simple assessment of information gain: how much does a particular attribute A_i help to classify a car with respect to MPG?

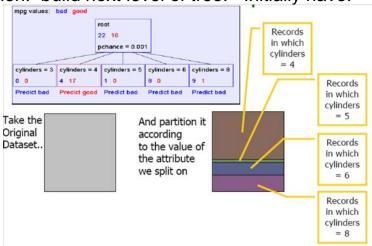


Begin the decision tree: start with most informative

criterion, cylinders:

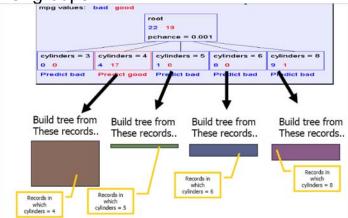


Recursion: build next level of tree. Initially have:

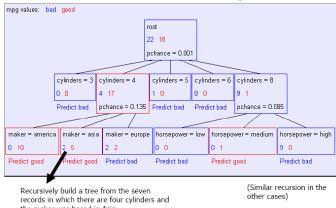


Now build sub-trees: split each set of cylinder numbers into

further groups-

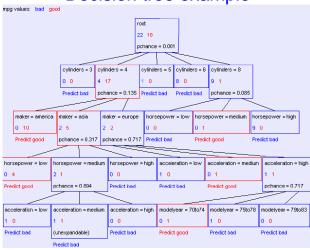


Resulting next level:



the maker was based in Asia

Final tree:



Points:

- Don't split node if all records have same value (e.g. cylinders = 6)
- Don't split node if can't have more than 1 child (e.g. acceleration = medium)

Pseudocode:

Program Tree(Input, Output)

If all output values are the same, then return leaf (terminal) node which predicts the unique output If input values are balanced in a leaf node (e.g. 1 good, 1 bad in acceleration) then return leaf predicting majority of outputs on same level (e.g. bad in this case) Else find attribute A_i with highest information gain

If attribute A_i at current node has m values

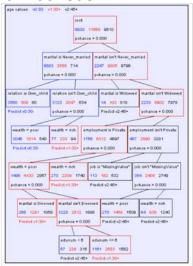
then Return internal (non-leaf) node with m children Build child i by calling Tree(NewIn, NewOut), where NewIn = values in

dataset consistent with value A_i and all values above this node

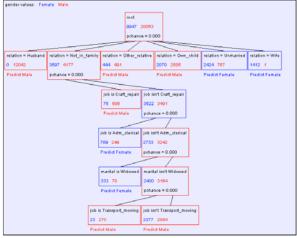
Another decision tree: prediction of wealth from census data (Moore):



Prediction of age from census:



Prediction of gender from census:



A. Moore

2. Important point: always cross-validate

It is important to test your model on *new* data (test data) which are different from the data used to train the model (training data).

This is cross-validation.

Cross-validation error – 2% is good; 40% is poor.

3. Background: mass spectroscopy

What does a mass spectrometer do?

- 1. It measures masses of molecules better than any other technique.
- It can give information about chemical structures of molecules.

How does it work?

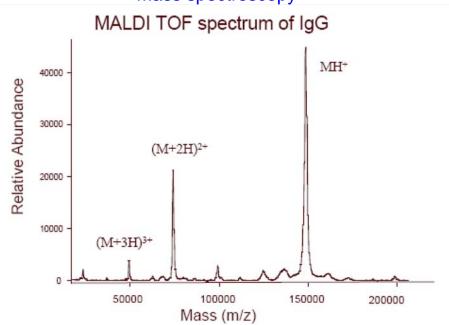
- 1. Takes unknown molecule M, adds i protons to it giving it charge +i (forming MH_i^+)
- **2.** Accelerates ion MH_i^+ in *known* electric field E.
- **3.** Measures time of flight along a *known* distance D.
- **4.** Time T of flight is inversely proportional to electric charge i and proportional to mass m of ion.

Thus

$$T \propto i/m$$

So mass spectrometer measures ratio of charge i (also known as z) and m, i.e., i/m=z/m.

With a large number of molecules in a biosample, this gives a spectrum of z/m values, which allows identification of molecules in sample (here $\lg G = immunoglobin G$)



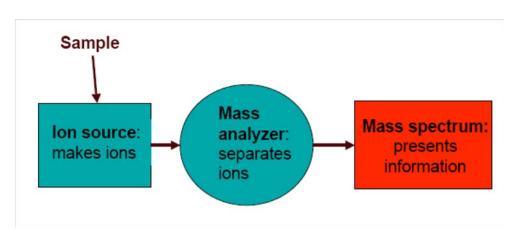
What are the measurements good for?

To identify, verify, and quantify: metabolites, proteins, oligonucleotides, drug candidates, peptides, synthetic organic chemicals, polymers

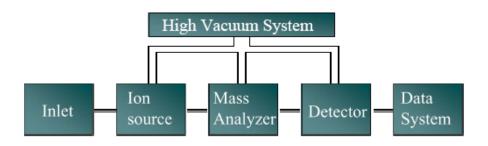
Applications of Mass Spectrometry

Biomolecule characterization
Pharmaceutical analysis
Proteins and peptides
Oligonucleotides

How does a mass spectrometer work?



Mass spectroscopy Mass Spectrometer Block Diagram



[Source: Sandler Mass Spectroscopy]

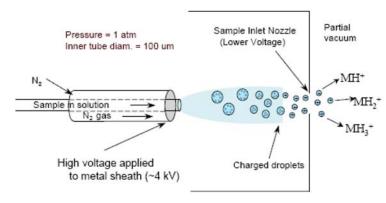
Two types of ionization:

1. Electrospray ionization (ESI):

Ion Sources make ions from sample molecules

(lons are easier to detect than neutral molecules.)

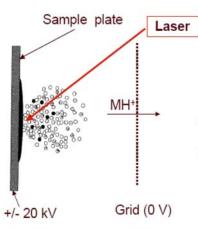
Electrospray ionization:



[above MH_i^+ denotes molecule with i protons (H^+) attached]

2. MALDI:

MALDI: Matrix Assisted Laser Desorption Ionization



- Sample is mixed with <u>matrix</u> (X) and dried on plate.
- Laser flash ionizes matrix molecules.
- Sample molecules (M) are ionized by proton transfer: XH⁺ + M → MH⁺ + X.

SMS

Mass analyzers separate ions based on their mass-tocharge ratio (m/z)

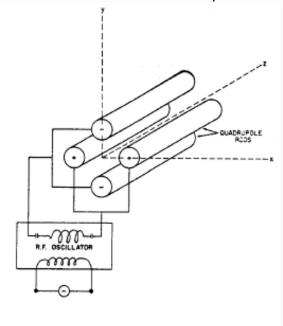
- ¤ Operate under high vacuum
- mass-to-charge ratio of ions (m/z)

Components:

1. Quadrupole Mass Analyzer (filter)

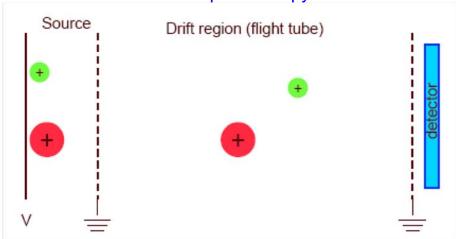
Uses a combination of RF and DC voltages to operate as a mass filter before masses are accelerated.

- Has four parallel metal rods.
- Lets one mass pass through at a time.
- Can scan through all masses or only allow one fixed mass.



2. Time-of-flight (TOF) Mass Analyzer

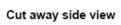
Accelerates ions with electric field, detects them, analyzes flight time.

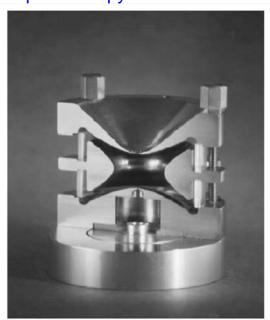


- lons are formed in pulses.
- The drift region is field free.
- Measures the time for ions to reach the detector.
- Small ions reach the detector before large ones.

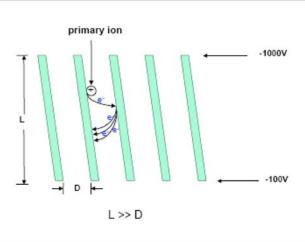
Ion trap mass analyzer:

Top View



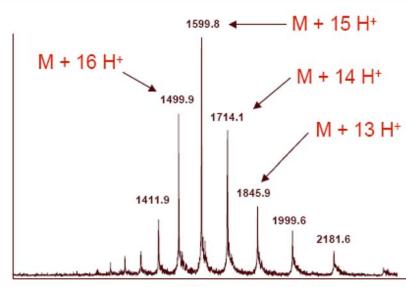


3. Detector: Ions are detected with a microchannel plate:



Mass spectrum shows the results:

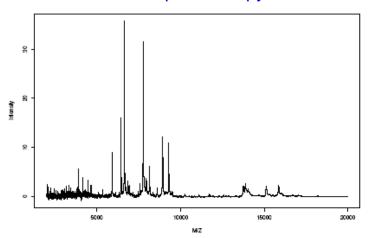
ESI Spectrum of Trypsinogen (MW 23983)



m/z ← Mass-to-charge ratio

4. Dimensional reduction (G. Izmirlian):

Sometimes we perform a *dimension reduction* by reducing mass spectrum information of human subject i to store only peaks:



Then have (compressed) peak information in feature vector

$$\mathbf{x}=(x_1,\ldots,x_d),$$

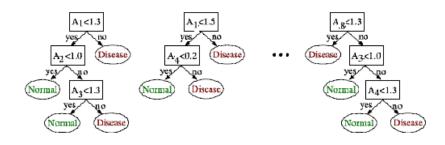
with $x_k = \text{location of } k^{th}$ mass spectrum peak (above a fixed threshold).

Compressed or not, outcome value to feature vector \mathbf{x}_i for subject i is $y_i = \pm 1$.

5. Random forest example

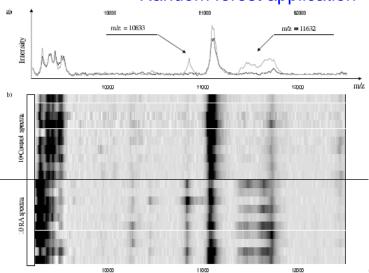
Example (Guerts, et al.):

Normal/sick dichotomy for RA and for IBD (above - Geurts, et al.): we now build a forest of decision trees based on differing attributes in the nodes:



For example: Could use mass spectroscopy data to determine disease state

Mass Spec segregates protein and other molecules through spectrum of m/z ratios (m= mass; z= charge).



Geurts, et al.

Random Forests:

Advantages: accurate, easy to use (Breiman software), fast, robust

Disadvantages: difficult to interpret

More generally: How to combine results of different predictors (e.g. decision trees)?

Random forests are examples of *ensemble methods*, which combine predictions of weak classifiers $p_i(\mathbf{x})$.

Ensemble methods: observations

1. Boosting: As seen earlier, take linear combination of predictions $p_i(\mathbf{x})$ by classifiers i (assume these are decision trees)

$$f(\mathbf{x}) = \sum_{i} a_i p_i(\mathbf{x}),\tag{1}$$

where
$$p_i(\mathbf{x}) = \begin{cases} 1 & \text{if } i^{th} \text{ tree predicts illness,} \\ -1 & \text{otherwise} \end{cases}$$

and predict y = 1 if $f(\mathbf{x}) \ge 0$ and y = -1 if $f(\mathbf{x}) < 0$.

Ensemble methods: observations

2. Bagging: Take a vote: majority rules (equivalent in this case to setting $a_i = 1$ for all i in (1) above).

Example of a **Bagging** algorithm is *random forest*, where a forest of decision trees takes a vote.

General features of a random forest:

If original feature vector $\mathbf{x} \in \mathbb{R}^d$ has d features A_1, \dots, A_d ,

• Each tree uses a random selection of $m \approx \sqrt{d}$ features $\{A_{i_j}\}_{j=1}^m$ chosen from *all* features A_1, A_2, \ldots, A_d ; the associated feature space is different for each tree and denoted by F_k , $1 \le k \le K = \#$ trees.

(Often K = # trees is large; e.g., K = 500).

 For each split in a tree node based on a given variable choose the variable A_i from information content.

Information content in a node

To compute information content of a node:

Assume input set to node is S: then information content of node N is

Information content in a node

$$I(N) = |S| H(S) - |S_L| H(S_L) - |S_R| H(S_R),$$

where

$$|S|=$$
 input sample size; $|S_{L,R}|=$ size of left, right subclasses of S

$$H(S) =$$
 Shannon entropy of $S = -\sum_{i=+1} p_i \log_2 p_i$

with

$$p_i = \widehat{P}(C_i|S) = \text{proportion of class } C_i \text{ in sample } S.$$

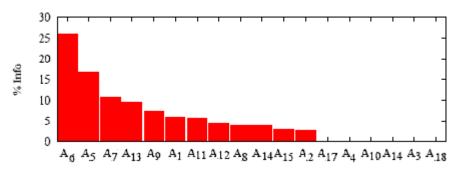
Information content in a node [later we will use *Gini index*, another criterion]

Thus H(S) = "variablity" or "lack of full information" in the probabilities p_i forming sample S input into current node N.

I(N) = "information from node N".

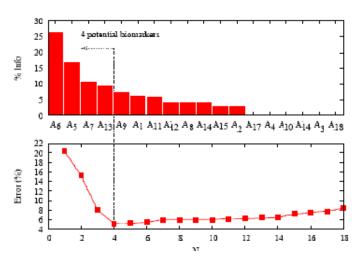
For each variable A_i , average over all nodes N in all trees involving this variable to find average information content $H_{\text{av}}(A_i)$ of A_i .

Information content in a node



(a) Rank all variables A_i according to information content (b) For each fixed $n_1 < n$ use only the first n_1 variables. Select n_1 which minimizes prediction error.

Information content in a node



Geurts, et al.

Application to:

- early diagnosis of Rehumatoid arthritis
- rapid diagnosis of inflammatory bowel diseases (IBD)

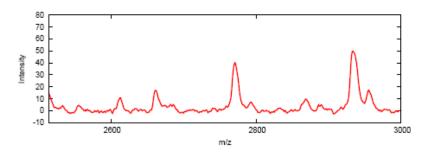
3 patient groups (University Hospital of Liege):

	RA	IBD
Disease patients	34	60
Negative controls	29	30
Inflammatory controls	40	30
Total	103	120

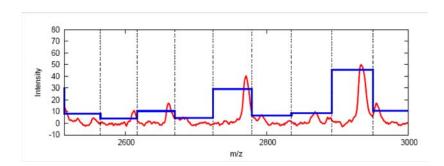
Mass spectra obtained by SELDI-TOF mass spectrometry on chip arrays:

- Hydrophobic (H4)
- weak cation-exchange (CM10)
- strong cation-exchange (Q10)

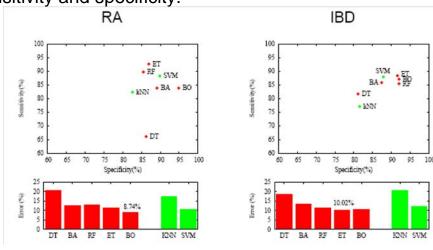
Feature vectors: $\mathbf{x} \in F$ consists of about 15,000 values in each case.



Effective dimension reduction method: Discretize horizontally and vertically to go from 15,000 to 300 variables



Sensitivity and specificity:



Accuracy measures: DT=Decision tree; RF=random forest; kNN = k-nearest neighbors;

Note on sensitivity and specificity: use confusion matrix

Test outcome

Actual Condition

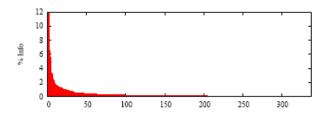
	True	False
Positive	TP	FP
Negative	FN	TN

Sensitivity =
$$\frac{TP}{TP + FN} = \frac{TP}{\text{Total positives}}$$

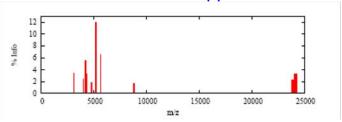
$$\label{eq:Specificity} \operatorname{Specificity} = \frac{TN}{TN + FP} = \frac{TN}{\operatorname{Total negatives}}$$

Positive predictive value =
$$\frac{TP}{TP+FP} = \frac{TP}{\text{Total predicted positives}}$$

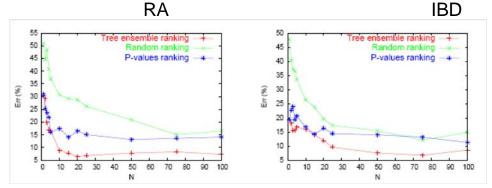
Variable ranking on the IBD dataset:



10 most important variables in spectrum:



RF-based (tree ensemble) - based variable ranking vs. variable ranking by individual variable p values:



6. RF software:

Spider:

http://www.kyb.tuebingen.mpg.de/bs/people/spider/whatisit.html

Leo Breiman:

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.htm

WEKA machine learning software http://www.cs.waikato.ac.nz/ml/weka/http://en.wikipedia.org/wiki/Weka_(machine_learning)