Decision Trees and Random Forests

Reference: Leo Breiman,
http://www.stat.berkeley.edu/~breiman/RandomForests
1. Decision trees

Example (Guerts, Fillet, et al., Bioinformatics 2005):

Patients to be classified: normal vs. diseased



Decision trees
Classification of biomarker data: large number of values
(e.g., microarray or mass spectrometry analysis of biological
sample)



Decision trees
Mass spectrometry parameters or
gene expression parameters (around 15k values)

m/z values or gene expression (+15000)
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Given new patient with biomarker data, is s/he normal or ill?



Decision trees
Needed: selection of relevant variables from many

Number n of known examples in D = {(x;,y;) }i",
Is small
(characteristic of data mining problems)

Assume we have for each biological sample a feature vector
X, and will classify it:

diseased: y =1; normal: y = —1.

Goal: find function f(x) ~ y which predicts y from x.



Decision trees
How to estimate error of f(x) and avoid over-fitting the
small dataset D?

Use cross-validation to test predictor f(x) in an unexamined
part of the sample D.

For biological sample, feature vector X = (z1,...,x4)
consists of features (or biomarkers or attributes) z; = A;
describing the biological sample from which x is obtained.



The decision tree approach
Decision tree approach to finding predictor f(x) = y based
on data set D:

@ form a tree whose nodes are attributes z; = A; in X
& decide which attributes A; to look at first in predicting y
from x find those with highest information gain -

place these at top of tree

é then use recursion to form sub-trees based on
attributes not used in the higher nodes:



The decision tree approach
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Advantages: interpretable, easy to use, scalable, robust



Decision tree example
Example 1 (Moore): UCI data repository
(http://lwww.ics.uci.edu/~mlearn/MLRepository.html)

MPG ratings of cars:
Goal: predict MPG rating of a car from a set of
attributes A;



Decision tree example

Examples (each row is attribute set for a sample car):
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Decision tree example
Simple assessment of information gain: how much does a
particular attribute A; help to classify a car with
respect to MPG?



Decision tree example

Infommation geine using the training sot (40 racardz)
mogvalies: bad good
It value  Distrisuticn It i
cylinders 3 0505731
4 I
s I
6 |
8 I
dispacenent low [ 0 223144
===
v
rorseporwer 1o NI 0 357605
mecun
wigh
weight o I 0304015
medim
hon
acceleration on [ © 642053
mecoun - [
righ [
madetyeer  7oto74 | 0 257954
vsore [
7o
maker america [N o 0437265
EE

Begin the decision tree: start with most informative



Decision tree example
criterion, cylinders:

mpg values: bad good

root
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Decision tree example
Recursion: build next level of tree. Initially have:

mpg values: bad good
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Now build sub-trees: split each set of cylinder numbers into



Decision tree example
further groups-
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Final tree:

Decision tree example

mpg values: bad good
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Recursively build a tree from the seven
records in which there are four cylinders and
the maker was based in Asia

(Similar recursion in the
other cases)




Decision tree example
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Decision tree example
Points:

B Don't split node if all records have same value (e.g.
cylinders = 6)

B Don't split node if can't have more than 1 child (e.g.
acceleration = medium)



Pseudocode:
Program Tree(Input, Output)

If all output values are the same,

then return leaf (terminal) node which predicts the
unique output

If input values are balanced in a leaf node (e.g. 1
good, 1 bad in acceleration)

then return leaf predicting majority of outputs
on same level (e.g. bad in this case)

Else find attribute A; with highest information gain

If attribute A; at current node has m values



then Return internal (non-leaf) node with m children
Build child 7 by calling Tree(Newln,
NewOut), where
Newln = values in
dataset consistent with value A; and all
values above this node



Another decision tree: prediction of wealth from census
data (Moore):
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Prediction of age from census:
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Prediction of gender from census:
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2. Important point: always cross-validate

It is important to test your model on new data (test data)
which are different from the data used to train the model
(training data).

This is cross-validation.

Cross-validation error — 2% is good; 40% is poor.



3. Background: mass spectroscopy
What does a mass spectrometer do?

1. It measures masses of molecules better than any other
technique.

2. It can give information about chemical structures of
molecules.



Mass spectroscopy
How does it work?

1. Takes unknown molecule M, adds 7 protons to it giving
it charge + i (forming MH")

2. Accelerates ion MH;" in known electric field E.
3. Measures time of flight along a known distance D.

4. Time T of flight is inversely proportional to electric
charge 7 and proportional to mass m of ion.



Mass spectroscopy
Thus

T ox i/m
So mass spectrometer measures ratio of charge i (also
known as z) and m, i.e., i/m = z/m.

With a large number of molecules in a biosample, this gives
a spectrum of z/m values, which allows identification of
molecules in sample (here IgG = immunoglobin G)



Relative Abundance

Mass spectroscopy
MALDI TOF spectrum of IgG
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Mass spectroscopy

What are the measurements good for?

To identify, verify, and quantify: metabolites, proteins,
oligonucleotides, drug candidates, peptides, synthetic
organic chemicals, polymers

Applications of Mass Spectrometry

Biomolecule characterization
Pharmaceutical analysis
Proteins and peptides
Oligonucleotides



Mass spectroscopy

How does a mass spectrometer work?

Sample




Mass spectroscopy
Mass Spectrometer Block Diagram
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[Source: Sandler Mass Spectroscopy]




Mass spectroscopy
Two types of ionization:

1. Electrospray ionization (ESI):



Mass spectroscopy

lon Sources make ions from sample molecules
(lons are easier to detect than neutral molecules.)

Electrospray ionization:
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Mass spectroscopy

[above MH;" denotes molecule with i protons (H") attached]



Mass spectroscopy
2. MALDI:

MALDI: Matrix Assisted Laser Desorption lonization

Sample plate

1. Sample is mixed with matrix (X)
and dried on plate.

2. Laser flash ionizes matrix
molecules.

3. Sample molecules (M) are

ionized by proton transfer:
XH*+M > MH* + X

+-20 kV Grid (0 V)

SMS



Mass spectroscopy

Mass analyzers separate ions based on their mass-to-
charge ratio (m/z)

a Operate under high vacuum
a Measure mass-to-charge ratio of ions (m/z)



Mass spectroscopy
Components:

1. Quadrupole Mass Analyzer (filter)

Uses a combination of RF and DC voltages to operate
as a mass filter before masses are accelerated.

 Has four parallel metal rods.
* Lets one mass pass through at a time.
» Can scan through all masses or only allow one fixed mass.



Mass spectroscopy



Mass spectroscopy
2. Time-of-flight (TOF) Mass Analyzer

Accelerates ions with electric field, detects them, analyzes
flight time.
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Dnift region (flight tube)



Mass spectroscopy
* lons are formed in pulses.
* The drift region is field free.
» Measures the time for ions to reach the detector.
» Small ions reach the detector before large ones.

lon trap mass analyzer:



Mass spectroscopy
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Mass spectroscopy

3. Detector: lons are detected with a microchannel plate:
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Mass spectroscopy
Mass spectrum shows the results:

ESI Spectrum of Trypsinogen (MW 23983)



Mass spectroscopy
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Mass spectroscopy
4. Dimensional reduction (G. Izmirlian):

Sometimes we perform a dimension reduction by reducing

mass spectrum information of human subject ¢ to store only
peaks:
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Mass spectroscopy

Then have (compressed) peak information in feature vector
X = (x1,...,24),

with z;, = location of k" mass spectrum peak (above a fixed
threshold).

Compressed or not, outcome value to feature vector x; for
subjectiisy; = + 1.



5. Random forest example
Example (Guerts, et al.):
Normal/sick dichotomy for RA and for IBD (above - Geurts,

et al.): we now build a forest of decision trees based
on differing attributes in the nodes:



Random forest application

For example: Could use mass spectroscopy data to
determine disease state



Random forest application
Mass Spec segregates protein and other molecules
through spectrum of m/z ratios (m = mass; z = charge).



Random forest application
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Random Forests:

Advantages: accurate, easy to use (Breiman software),
fast, robust

Disadvantages: difficult to interpret

More generally: How to combine results of different
predictors (e.g. decision trees)?

Random forests are examples of ensemble methods, which
combine predictions of weak classifiers p;(x).



Ensemble methods: observations
1. Boosting: As seen earlier, take linear combination of
predictions p;(x) by classifiers i (assume these are decision

trees)

fx) = Zaipi(x)’ (1)

1 if i'" tree predicts illness
where pi(x) = { ~1 otherwisep !

and predicty = 1if f(x) > 0andy = —1if f(x) <0.



Ensemble methods: observations
2. Bagging: Take a vote: majority rules (equivalent in this
case to setting a; = 1for all 7 in (1) above).

Example of a Bagging algorithm is random forest, where a
forest of decision trees takes a vote.



General features of a random forest:
If original feature vector x € R has d features 4, ..., Ag,

¢ Each tree uses a random selection of m ~ \/ﬁ features
{Aij};ﬂ:l chosen from all features Aq, A, ..., Ay;

the associated feature space is different for each tree
and denoted by Fj, 1 < k < K = #trees.

(Often K = #trees is large; e.g., K = 500).

¢ For each splitin a tree node based on a given variable
choose the variable A; from information content.



Information content in a node

To compute information content of a node:
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Assume input set to node is S: then information content of
node N is




Information content in a node
I(N)=|S|H(S)—|St| H(S1) — |Sr| H(SR),

where

|S| = input sample size;  |Sy x| = size of left, right
subclasses of S

H(S) = Shannon entropy of S = — ) _ pilog,p;
i=+1

with

p; = P(C;|S) = proportion of class C; in sample S.



Information content in a node
[later we will use Gini index, another criterion]

Thus H(S) = "variablity" or "lack of full information” in the
probabilities p; forming sample S input into current
node N.

I(N) = "information from node N".

For each variable A;, average over all nodes N in all trees
involving this variable to find average information content



Information content in a node
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(a) Rank all variables A; according to information content
(b) For each fixed n; < n use only the first n, variables.
Select n; which minimizes prediction error.
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Random forests: application
Application to:

e early diagnosis of Rehumatoid arthritis
e rapid diagnosis of inflammatory bowel diseases (IBD)

3 patient groups (University Hospital of Liege):



Random forests: application

RA | IBD
Disease patients 34 |60
Negative controls 29 | 30
Inflammatory controls | 40 | 30
Total 103 | 120

Mass spectra obtained by SELDI-TOF mass spectrometry
on chip arrays:



Random forests: application
e Hydrophobic (H4)
e weak cation-exchange (CM10)
e strong cation-exchange (Q10)



Random forests: application
Feature vectors: x € F consists of about 15,000 values in

each case.
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Effective dimension reduction method: Discretize
horizontally and vertically to go from 15,000 to 300 variables
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Random forests: application
Sensitivity and specificity:
RA IBD
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Random forests: application
Accuracy measures: DT=Decision tree;
RF=random forest; kNN = k-nearest neighbors;

Note on sensitivity and specificity: use confusion matrix

Test outcome

Actual Condition

True | False

Positive | TP FP

Negative | FN TN




Random forests: application

TP TP

Sensitivity = = —
y TP+ FN  Total positives

TN TN
TN + FP  Total negatives

Specificity =

-y . - - _ TP _ TP
Positive predlctlve value = TP+FP ~ Total predicted positives




Random forests: application
Variable ranking on the IBD dataset:
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10 most important variables in spectrum:



Random forests: application
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RF-based (tree ensemble) - based variable ranking
vs. variable ranking by individual variable p values:
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6. RF software:

Spider:
http://www.kyb.tuebingen.mpg.de/bs/people/spider/whatisit.
html

Leo Breiman:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc__
software.htm

WEKA machine learning software
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Weka_(machine_learning)



