- J. Ivanhoe, M. Salins,
*Preventing finite-time blowup in a constrained potential for reaction-diffusion equations*, (2024), 18 pgs.**arXiv:2406.15672**. - L. Chen, M. Foondun, J. Huang, M. Salins,
*Global solution for superlinear stochastic heat equation on R*, (2023), 22 pgs.^{d}under Osgood-type conditions**arXiv:2310.02153**.

- M. Salins,
*Solutions to the stochastic heat equation with polynomially growing multiplicative noise do not explode in the critical regime*, to appear in Annals of Probability (2024), 17 pgs.**arXiv:2309.04330**. - M. Salins and S. Tindel,
*Regularity of the law of solutions to the stochastic heat equation with non-Lipschitz reaction term*, Stochastic Processes and their Applications 168 (2024) 104263. 24 pgs.**arXiv:2302.10678**. - I. Gasteratos, M. Salins, and K. Spiliopoulos,
*Importance sampling for stochastic reaction-diffusion equations in the moderate deviation regime*, Stochastics and Partial Differential Equations: Analysis and Computations (2023), 62 pgs.**arXiv:2206.00646**. - I. Gasteratos, M. Salins, and K. Spiliopoulos,
*Moderate deviations for systems of slow-fast reaction-diffusion equations*, Stochastics and Partial Differential Equations: Analysis and Compuations 11(2) (2023), pp. 503-598.**arXiv:2101.00085**. - M. Salins and L. Setayeshgar,
*Uniform large deviations for a class of Burgers-type stochastic partial differential equations in any spatial dimension*, Potential Analysis 58(1) (2023), pp. 181-201. - M. Salins,
*Global solutions to the stochastic heat equation with superlinear accretive reaction term and superlinear multiplicative noise term on a bounded spatial domain*, Transactions of the American Mathematical Society 375(11) (2022) pp. 8083-8099.**arXiv:2110.10130**. - M. Salins,
*Global solutions for the stochastic reaction-diffusion equation with super-linear multiplicative noise and strong dissipativity*, Electronic Journal of Probability 27 (2022), 17 pgs.**arXiv:2107.04459**. - M. Salins,
*Existence and uniqueness of global solutions to the stochastic heat equation with super-linear drift on an unbounded spatial domain*, Stochastics and Dynamics 22(5) (2021) 2250014, 30 pgs.**arXiv:2106.13221**. - M. Salins,
*Systems of small-noise stochastic reaction-diffusion equations satisfy a large deviations principle that is uniform over all initial data*, Stochastic Processes and Their Applications 142 (2021), pp. 159-194.**arXiv:2008.01140**. - M. Salins and K. Spiliopoulos,
*Metastability and exit problems for systems of stochastic reaction-diffusion equations*, The Annals of Probability 49(5) (2021), pp. 2317-2370.**arXiv:1903.06038**. - M. Salins,
*Existence and uniqueness for the mild solution of the stochastic heat equation with non-Lipschitz drift on an unbounded spatial domain*, Stochastics and Partial Differential Equations: Analysis and Computations 9(3) (2021), pp. 714-745.**arXiv:2002.02016**. - C. Mueller, E. Neuman, M. Salins, and G. Truong,
*An improved uniqueness result for a system of stochastic differential equations related to the stochastic wave equation*, Journal of Stochastic Analysis 1(2) (2020), pp. 1-7.**arXiv:1909.05944**. - W. Hu, K. Spiliopoulos, M. Salins,
*Large deviations and averaging for systems of slow-fast stochastic reaction-diffusion equations*, Stochastics and Partial Differential Equations: Analysis and Computation 7(4) (2019), pp. 808-874.**arXiv:1710.02618**. - M. Salins, A. Budhiraja, and P. Dupuis,
*Uniform large deviation principles for Banach space valued stochastic evolution equations*, Transactions of the American Mathematical Society 372(12) (2019), pp. 8363-8421.**arXiv:1803.00648**. - M. Salins,
*Equivalences and counterexamples between several definitions of the uniform large deviations principle*, Probability Surveys 16(1) (2019), pp. 99-142.**arXiv:1712.07231**. - M. Salins,
*Smoluchowski-Kramers approximation for the damped stochastic wave equation with multiplicative noise in any spatial dimension*, Stochastic and Partial Differential Equations: Analysis and Computation 7(1) (2019), pp.86-122.**arXiv:1801.10538**. - A. Gomez, J.J. Lee, C. Mueller, E. Neuman, and M. Salins,
*On Uniquness and blowup properties for a class of second order SDEs*, Electronic Journal of Probability 22(72) (2017), pp. 1-17.**arXiv:1702.07419**. - M. Salins, K. Spiliopoulos,
*Rare event simulation via importance sampling for linear SPDE's*, Stochastics and Partial Differential Equations: Analysis and Compuation 5(4) (2017), pp. 652-690.**arXiv:1609.04365**. - Z. Pajor-Gyulai, M. Salins,
*On dynamical systems perturbed by a null-recurrent motion: The general case*, Stochastic Processes and their Applications 127(6) (2017), pp. 1960-1997.**arXiv:1508.05346**. - S. Cerrai, M. Freidlin, M. Salins,
*On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior*, Discrete and Continuous Dynamical Systems 37(1) (2017), pp. 33-76.**arXiv:1602:04279**. - S. Cerrai, M. Salins,
*On the Smoluchowski-Kramers approximation for a system with infinite degrees of freedom exposed to a magnetic field*, Stochastic Processes and their Applications 127(1) (2017), pp. 273-303.**arXiv:1409.0803**. - M. Salins and K. Spiliopoulos,
*Markov processes with spatial delay: path space characterization, occupation time and properties*, Stochastics and Dynamics 17(06) (2016), 24 pgs.**arXiv:1601:03759**. - S. Cerrai, M. Salins,
*Smoluchowski-Kramers approximation and large deviations for a general non-gradient system with an infinite number of degrees of freedom*, Annals of Probability 44(4) (2016), 2591-2642.**arXiv:1403.5745**. - Z. Pajor-Gyulai, M. Salins,
*On dynamical systems with perturbation driven by a null-recurrent fast motion: the continuous coefficient case*, Journal of Theoretical Probability 29(3) (2016), pp. 1083-1099.**arXiv:1410:4625**. - S. Cerrai, M. Salins,
*Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems*, Asymptotic Analysis 88(4) (2014), pp. 201-215.**arXiv:1403.5743**.