MA573-Fall 2022 Homework 4 - Due September 30th

Hirsh-Smale-Devaney Problems

Chapter 2: 9
Chapter 3: 2(i), (iii),(iv), 5, 7, 16 (hint: first draw the phase portraits for both cases: $x^{\prime}=+y$ and $x^{\prime}=-y$ and think about when the functions $g(y)= \pm y$ coincide with the function $f(y)=|y|$.)

Non-textbook Problem(s):

Problem 1: Consider again the system from Problem 3.16 above:

$$
\begin{align*}
x^{\prime} & =|y| \\
y^{\prime} & =-x . \tag{0.1}
\end{align*}
$$

Use a numerical approach (such as Matlab's built in ODE solver "ode45" (or "ode15s")) to numerically solve the equation, plotting several solution trajectories $\{(x(t), y(t), \mid t \in \mathbb{R}\}$ to compare with your answer to 16 above. Some useful initial conditions to try would be points of the form $(c,-1)$, with c ranging from -3 to 3 .
Problem 2:(Projective coordinates) Consider the linear system

$$
\begin{array}{r}
x^{\prime}=x, \\
y^{\prime}=-y .
\end{array}
$$

For any line $\ell \subset \mathbb{R}^{2}$ passing through the origin, there exists a vector $V=\left(v_{1}, v_{2}\right)^{T} \in \mathbb{R}^{2}$ such that

$$
\ell=\operatorname{Span}\{V\}=\left\{c\left(v_{1}, v_{2}\right)^{T} \mid c \in \mathbb{R}\right\} .
$$

(i) Give a qualitative argument for how the initial conditions on ℓ evolve as time increases. In other words what does the set of points $\ell_{t}=\left\{\left(\phi\left(t, X_{0}\right)\right): X_{0} \in \ell\right\}$ look like as time evolves.
(ii) Let's study this by deriving a differential equation for the slope of the line. Let $z(t)=$ $y(t) / x(t)$, where y and x solve the linear system. Derive a differential equation for $z(t)$.
(iii) What are the asymptotics of solutions of the z-equation you found. Interpret this in terms of the evolution of lines ℓ under the flow of the original linear system.

