MA573-Fall 2022 Homework 9 - Due November 11th

Hirsh-Smale-Devaney Problems

Chapter 8: 2 (hint: see examples in Sec. 8.3 on pg. 173, as well as in 8.1 pg).
Non-textbook Problem(s):
Problem 1: Consider the linear system

$$
\begin{align*}
x^{\prime} & =x-x^{3} \\
y^{\prime} & =-y-x^{2} . \tag{0.1}
\end{align*}
$$

(i) Find all equilibria and classify each associated linear system. If possible, use the Linearization Theorem (pg. 168 of text) to also classify and make a rough sketch the nonlinear phase portrait in a local neighborhood of each equilibrium.
(ii) The origin should be a saddle. Describe the stable and unstable subspaces of it's linearization.
(iii) Using the method we discussed in class, find the 4th-order Taylor expansion of the function $h^{u}(x)$ which describes the local unstable manifold $W^{u}(0)=\left\{(x, y) \mid x=h^{u}(y)\right\}$. Use this to more accurately sketch the local phase portrait near the origin.
(iv) Do the same for the stable manifold $W^{s}(0)$. Note here the graph function should have the form $x=h^{s}(y)$.

Problem 2: Now consider the slightly altered system

$$
\begin{align*}
x^{\prime} & =x-x^{3} \\
y^{\prime} & =-y-x^{3} . \tag{0.2}
\end{align*}
$$

The linearization about the origin should not change. Does the unstable manifold $W^{s}(0)$ change? Problem 3: Now investigate the above two systems numerically and compare the results with your calculations of the invariant manifolds. For example, how do solutions behave if you put initial conditions $\left(x_{0}, 1\right)$ for x_{0} just off of the predicted stable manifold?

