MA775 - Fall 2017 Homework 4 - Due November 14th

Problem 1(*Prof. Scheel's Class*) Let $u' = f(u, \mu)$, with $\mu \in \mathbb{R}, u \in \mathbb{R}^n$ have a periodic orbit $\gamma_*(t)$ with period T > 0 at $\mu = 0$ with Floquet Multiplier $\rho = 1$, algebraically simple. Prove that this orbit is robust in μ , that is it persists for all μ near 0. More precisely, prove that there exists a family of periodics $u_*(t;\mu)$ with period $T(\mu)$ smooth in μ .

Problem 2(Arnold, Mathematical methods of classical mechanics): Let $u'' + a^2(t)u = 0$ with $a(t) = \omega + \epsilon$ for $t \in [0, \pi)$ and $a(t) = \omega - \epsilon$ for $t \in [\pi, 2\pi)$. Find the region in the (ϵ, ω) -plane for which the trivial state is stable using the following steps:

- (a) Compute the period map $\Psi = \Phi_{2\pi,0}$.
- (b) Show that the system is stable for $tr(\Psi) < 2$.
- (c) Conclude stability criteria and formulas for boundaries of this region.
- (c) Find expansions for these boundaries, $\omega(\epsilon)$ near $\epsilon = 0$ and $\omega \in \mathbb{N}/2$.

Problem 3(*Prof. Scheel's Class*) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a vector-field whose associated ODE has a periodic orbit in a region Ω such that divf < 0. For n = 2 show that the periodic orbit is stable. Is this true for n = 3? Now assume divf > 0, can the periodic orbit be stable in any dimension n?

Problem 4(Guckenheimer & Holmes 4.3.2: Study the following systems using averaging methods:

$$x' = \epsilon(x - x^2) \sin^2 t,$$
 $x' = \epsilon(x \sin^2 t - x^2/2)$

Optional exercise for more practice explicitly calculating Floquet multipliers (*Chicone Exc. 2.91*)

Find a periodic solution of the system

$$x' = x - y - x(x^{2} + y^{2}),$$

$$y' = x + y - y(x^{2} + y^{2}),$$

$$z' = -z.$$

and determine its stability type by computing the Floquet multipliers of the period map.