MA775-Fall 2017 Homework 4 - Due November 14th
Problem 1 (Prof. Scheel's Class) Let $u^{\prime}=f(u, \mu)$, with $\mu \in \mathbb{R}, u \in \mathbb{R}^{n}$ have a periodic orbit $\gamma_{*}(t)$ with period $T>0$ at $\mu=0$ with Floquet Multiplier $\rho=1$, algebraically simple. Prove that this orbit is robust in μ, that is it persists for all μ near 0 . More precisely, prove that there exists a family of periodics $u_{*}(t ; \mu)$ with period $T(\mu)$ smooth in μ.
Problem 2(Arnold, Mathemtaical methods of classical mechanics): Let $u^{\prime \prime}+a^{2}(t) u=0$ with $a(t)=\omega+\epsilon$ for $t \in[0, \pi)$ and $a(t)=\omega-\epsilon$ for $t \in[\pi, 2 \pi)$. Find the region in the (ϵ, ω)-plane for which the trivial state is stable using the following steps:
(a) Compute the period map $\Psi=\Phi_{2 \pi, 0}$.
(b) Show that the system is stable for $\operatorname{tr}(\Psi)<2$.
(c) Conclude stability criteria and formulas for boundaries of this region.
(c) Find expansions for these boundaries, $\omega(\epsilon)$ near $\epsilon=0$ and $\omega \in \mathbb{N} / 2$.

Problem 3(Prof. Scheel's Class) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector-field whose associated ODE has a periodic orbit in a region Ω such that $\operatorname{div} f<0$. For $n=2$ show that the periodic orbit is stable. Is this true for $n=3$? Now assume $\operatorname{div} f>0$, can the periodic orbit be stable in any dimension n ?
Problem 4(Guckenheimer $\mathcal{E}^{\text {Golmes 4.3.2: Study the following systems using averaging methods: }}$

$$
x^{\prime}=\epsilon\left(x-x^{2}\right) \sin ^{2} t, \quad x^{\prime}=\epsilon\left(x \sin ^{2} t-x^{2} / 2\right) .
$$

Optional exercise for more practice explicitly calculating Floquet multipliers(Chicone Exc. 2.91)
Find a periodic solution of the system

$$
\begin{aligned}
x^{\prime} & =x-y-x\left(x^{2}+y^{2}\right), \\
y^{\prime} & =x+y-y\left(x^{2}+y^{2}\right), \\
z^{\prime} & =-z .
\end{aligned}
$$

and determine its stability type by computing the Floquet multipliers of the period map.

