A Taniyama product for the Riemann zeta function

David E. Rohrlich

Abstract

A Taniyama product for the Riemann zeta function is defined and an analogue of Mertens' theorem is proved.

1 Introduction

Tucked unobtrusively into Taniyama's memoir [4] on compatible families of ℓ-adic representations is a curious identity expressing the zeta function of such a family as an infinite product of imprimitive Artin L-functions ([4], p. 356, Theorem 3). The simplest case of the identity (arising from the cyclotomic character, or from its inverse, depending on one's conventions) is

$$
\begin{equation*}
\zeta(s-1) / \zeta(s)=\prod_{c \geqslant 1} \zeta_{c}(s) \tag{1}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta function and $\zeta_{c}(s)$ is the imprimitive Dedekind zeta function - imprimitive because the Euler factors at the primes dividing c are removed - of the cyclotomic field K_{c} generated over \mathbb{Q} by the c th roots of unity. Thus $\zeta_{1}(s)$ is $\zeta(s)$ itself, $\zeta_{2}(s)$ is $\left(1-2^{-s}\right) \zeta(s)$, and so on. The infinite product converges for $\Re(s)>2$.

In this note we modify (1) slightly so as to obtain a product for $\zeta(s)$ rather than $\zeta(s-1) / \zeta(s)$. Let K_{c}^{+}be the maximal totally real subfield of K_{c}, and let $\zeta_{c}^{+}(s)$ be the Dedekind zeta function of K_{c}^{+}with the Euler factors at the primes dividing c removed. Then

[^0]\[

$$
\begin{equation*}
\zeta(s)=\prod_{c \geqslant 1} \zeta_{c}^{+}(s+1) \tag{2}
\end{equation*}
$$

\]

Like the traditional Euler product

$$
\begin{equation*}
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1} \tag{3}
\end{equation*}
$$

the Taniyama product (2) converges for $\Re(s)>1$.
The main result of this note can be viewed as an analogue of Mertens' theorem [2]. It bears the same relation to (2) as Mertens' theorem does to (3), and Mertens' theorem itself figures prominently in the the proof. Let γ denote the Euler-Mascheroni constant.

Theorem 1. $\prod_{c \leqslant x} \zeta_{c}^{+}(2) \sim e^{\gamma} \log x$.
Of course $\zeta_{c}^{+}(2)$ can be computed explicitly in terms of generalized Bernoulli numbers. For a primitive Dirichlet character χ of conductor q, let

$$
b_{2, \chi}=\sum_{j=1}^{q} \chi(j)\left(j^{2} / q-j+q / 6\right)
$$

Also write d_{c}^{+}for the discriminant of K_{c}^{+}, and let $\varphi(c)$ be the cardinality of $(\mathbb{Z} / c \mathbb{Z})^{\times}$. For the sake of a succinct formula we put

$$
\phi(c)= \begin{cases}\varphi(c) & \text { if } c \geqslant 3 \\ 2 & \text { if } c=1 \text { or } 2\end{cases}
$$

Then

$$
\begin{equation*}
\zeta_{c}^{+}(2)=\frac{\pi^{\phi(c)}}{d_{c}^{+3 / 2}} \prod_{\substack{q \mid c}} \prod_{\substack{\chi \bmod q \\ \chi(-1)=1}}^{*} b_{2, \chi} \prod_{p \mid c}\left(1-\chi(p) p^{-2}\right) \tag{4}
\end{equation*}
$$

where the asterisk indicates that in the second product, χ runs over primitive characters of conductor q.

Expressions similar to (4) have arisen in other contexts. For example, nearly the same triple product occurs in a formula of Yu [6] for the order of a certain cuspidal divisor class group of the modular curve $X_{1}(N)$ (see also Yang [5], p. 521). Even so, the differences between Yu's formula and (4) appear to be significant enough to preclude a straightforward interpretation of Theorem 1 as an asymptotic average of cuspidal divisor class numbers.

It is a pleasure to thank the referee for a careful reading of the manuscript.

2 Taniyama's identity

A proof of (1) is of course subsumed in Taniyama's proof of his general formula, but we will nonetheless sketch a proof here before going on to the modification (2). For a prime p not dividing c let $f(p, c)$ be the order of the residue class of p in $(\mathbb{Z} / c \mathbb{Z})^{\times}$. Also, write $Z(s)$ for the right-hand side of (1). Then $Z(s)$ can be written as the double product

$$
\begin{equation*}
Z(s)=\prod_{c \geqslant 1} \prod_{p \nmid c}\left(1-p^{-s f(p, c)}\right)^{-\varphi(c) / f(p, c)}, \tag{5}
\end{equation*}
$$

where the inner product is $\zeta_{c}(s)$ and runs over primes not dividing c. The proof of (1) amounts to reversing the order of multiplication in the double product in (5). By choosing a branch of $\log Z(s)$ we can do the computation additively, and the absolute convergence of the resulting triple sum in the right half-plane $\Re(s)>2$ will show a posteriori that the original double product is meaningful in this region and that the calculation is legitimate.

We define our branch of $\log Z(s)$ by

$$
\begin{equation*}
\log Z(s)=\sum_{c \geqslant 1} \sum_{p \nmid c} \frac{\varphi(c)}{f(p, c)} \sum_{m \geqslant 1} \frac{p^{-m f(p, c) s}}{m} . \tag{6}
\end{equation*}
$$

Putting $d=m f(p, c)$ and summing over $d \geqslant 1$, we obtain

$$
\log Z(s)=\sum_{c \geqslant 1} \sum_{d \geqslant 1} \sum_{\substack{p \nmid c \\ f(p, c) \mid d}} \frac{\varphi(c)}{d} p^{-d s}
$$

or equivalently $\left(\right.$ since $f(p, c) \mid d$ if and only if $p^{d} \equiv 1 \bmod c$)

$$
\log Z(s)=\sum_{p} \sum_{d \geqslant 1} \sum_{\substack{c \geqslant 1 \\ c \mid p^{d}-1}} \frac{\varphi(c)}{d} p^{-d s} .
$$

As $\sum_{m \mid n} \varphi(m)=n$, we conclude that

$$
\log Z(s)=\sum_{p} \sum_{d \geqslant 1} d^{-1} p^{-d s}\left(p^{d}-1\right)
$$

The inner sum equals $\log \left(\left(1-p^{1-s}\right)^{-1}\left(1-p^{-s}\right)\right)$, and (1) follows.

3 The modification

The proof of (2) is much the same. Put $\varphi^{+}(c)=\left[K_{c}^{+}: \mathbb{Q}\right]$, so that $\varphi^{+}(c)$ is 1 if $c=1$ or 2 and $\varphi(c) / 2$ otherwise. (Note also that $\varphi^{+}(c)=\phi(c) / 2$, where $\phi(c)$ is as in the introduction.) If p is a prime not dividing c, then the order in $\operatorname{Gal}\left(K_{c}^{+} / \mathbb{Q}\right)$ of a Frobenius at p will be denoted $f^{+}(p, c)$. Of course $f^{+}(p, c)$ is also the order of the coset represented by p in the quotient of $(\mathbb{Z} / c \mathbb{Z})^{\times}$by the image of $\{ \pm 1\}$. Let $Z^{+}(s)$ denote the right-hand side of (2), and write $Z^{+}(s)$ as a double product:

$$
\begin{equation*}
Z^{+}(s)=\prod_{c \geqslant 1} \prod_{p \nmid c}\left(1-p^{-s f^{+}(p, c)}\right)^{-\varphi^{+}(c) / f^{+}(p, c)} . \tag{7}
\end{equation*}
$$

Define a branch of $\log Z^{+}(s)$ by setting

$$
\begin{equation*}
\log Z^{+}(s)=\sum_{c \geqslant 1} \sum_{p \nmid c} \frac{\varphi^{+}(c)}{f^{+}(p, c)} \sum_{m \geqslant 1} \frac{p^{-m f^{+}(p, c) s}}{m} . \tag{8}
\end{equation*}
$$

The calculation will again show that the triple sum is absolutely convergent for $\Re(s)>2$. Putting $d=m f^{+}(p, c)$ and summing over $d \geqslant 1$, we find

$$
\log Z^{+}(s)=\sum_{c \geqslant 1} \sum_{d \geqslant 1} \sum_{\substack{p \nmid c \\ f^{+}(p, c) \mid d}} \frac{\varphi^{+}(c)}{d} p^{-d s}
$$

as before. But the condition $f^{+}(p, c) \mid d$ means $c \mid p^{d}-1$ or $c \mid p^{d}+1$, so we get

$$
\begin{equation*}
\log Z^{+}(s)=\sum_{p} \sum_{d \geqslant 1} \sum_{c \mid\left(p^{d} \pm 1\right)} \frac{\varphi^{+}(c)}{d} p^{-d s} \tag{9}
\end{equation*}
$$

We emphasize that the innermost sum is the sum over all c such that at least one of the conditions $c \mid p^{d}-1$ and $c \mid p^{d}+1$ is satisfied.

If $c \geqslant 3$ then the conditions $c \mid p^{d}-1$ and $c \mid p^{d}+1$ are mutually exclusive and $\varphi^{+}(c)=\varphi(c) / 2$, so we have

$$
\begin{equation*}
\sum_{\substack{c \geqslant 3 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c)=\frac{1}{2} \sum_{\substack{c \geqslant 3 \\ c \mid p^{d}-1}} \varphi(c)+\frac{1}{2} \sum_{\substack{c \geqslant 3 \\ c \mid p^{d}+1}} \varphi(c) . \tag{10}
\end{equation*}
$$

On the other hand, if $c=1$ or 2 then the conditions $c \mid p^{d}-1$ and $c \mid p^{d}+1$ are both satisfied (for if $c=2$ then p is odd), but $\varphi^{+}(c)=1$. So equation (10) is correct without the restriction $c \geqslant 3$, and the identity $\sum_{m \mid n} \varphi(m)=n$ gives

$$
\begin{equation*}
\sum_{c \mid\left(p^{d} \pm 1\right)} \varphi^{+}(c)=\frac{1}{2}\left(\left(p^{d}-1\right)+\left(p^{d}+1\right)\right)=p^{d} \tag{11}
\end{equation*}
$$

Multiplying through by $p^{-d s} / d$ in (11) and inserting the result in (9), we obtain

$$
\log Z^{+}(s)=\sum_{p} \log \left(1-p^{1-s}\right)^{-1}
$$

or in other words

$$
\begin{equation*}
\prod_{c \geqslant 1} \zeta_{c}^{+}(s)=\zeta(s-1) \tag{12}
\end{equation*}
$$

for $\Re(s)>2$. Replacing s by $s+1$ gives (2) for $\Re(s)>1$.

4 The analogue of Mertens' theorem

We shall prove that

$$
\begin{equation*}
\prod_{c \leqslant x+1} \zeta_{c}^{+}(2) \sim e^{\gamma} \log x \tag{13}
\end{equation*}
$$

Theorem 1 is an immediate consequence of (13), because $\log (x-1) \sim \log x$.
We proceed as in the derivation of (2), but with two crucial changes: first, we take $s=2$, and second, c now runs over the finite set of positive integers $\leqslant x+1$. Thus (8) is replaced by

$$
\begin{equation*}
\log \prod_{c \leqslant x+1} \zeta_{c}^{+}(2)=\sum_{c \leqslant x+1} \sum_{p \nmid c} \frac{\varphi^{+}(c)}{f^{+}(p, c)} \sum_{m \geqslant 1} \frac{p^{-2 m f^{+}(p, c)}}{m} \tag{14}
\end{equation*}
$$

Next we make the change of variables $d=m f^{+}(p, c)$. Since c runs over a finite set and the Dirichlet series for $\log \zeta_{c}^{+}(s)$ is absolutely convergent for $\Re(s)>1$ and in particular for $s=2$, we can rearrange the order of summation to obtain

$$
\begin{equation*}
\log \prod_{c \leqslant x+1} \zeta_{c}^{+}(2)=\sum_{p} \sum_{\substack{d \geqslant 1}} \sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \frac{p^{-2 d}}{d} \tag{15}
\end{equation*}
$$

as in (9). For the sake of notational simplicity, we conflate the double sum over p and d into a single sum over p^{d}, and we put

$$
\begin{equation*}
\Phi\left(p^{d}, x\right)=\frac{p^{-2 d}}{d} \sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \tag{16}
\end{equation*}
$$

Then (15) can be written in the form

$$
\begin{equation*}
\log \prod_{c \leqslant x+1} \zeta_{c}^{+}(2)=\sum_{\substack{p^{d}>x \\ d \geqslant 2}} \Phi\left(p^{d}, x\right)+\sum_{p>x} \Phi(p, x)+\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right) \tag{17}
\end{equation*}
$$

We shall prove the following assertions:

$$
\begin{gather*}
\sum_{\substack{p^{d}>x \\
d \geqslant 2}} \Phi\left(p^{d}, x\right)=o(1) \tag{18}\\
\sum_{p>x} \Phi(p, x)=o(1) \tag{19}\\
\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right)=\log \prod_{p \leqslant x}\left(1-p^{-1}\right)^{-1}+o(1) . \tag{20}
\end{gather*}
$$

Granting these statements and using them in (17), we find that

$$
\log \prod_{c \leqslant x+1} \zeta_{c}^{+}(2)=\log \prod_{p \leqslant x}\left(1-p^{-1}\right)^{-1}+o(1)
$$

whence exponentiation and an appeal to Mertens' theorem give (13).
To prove (18), we first note that

$$
\begin{equation*}
\sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \leqslant p^{d} \tag{21}
\end{equation*}
$$

by (11). Thus $\Phi\left(p^{d}, x\right) \leqslant p^{-d} / d$ by (16), whence the left-hand side of (18) is bounded by the sum of the terms with $p^{d}>x$ in the convergent double series $\sum_{p} \sum_{d \geqslant 2} p^{-d} / d$. Since the tail of a convergent series is $o(1)$, we obtain (18).

Next we prove (19). Take $x>20$. It suffices to show that the sums

$$
\sum_{1}=\sum_{x<p \leqslant x \log x} \Phi(p, x)
$$

and

$$
\sum_{2}=\sum_{p>x \log x} \Phi(p, x)
$$

are both $o(1)$. Appealing once again to (21) and (16), we see that

$$
\sum_{1} \leqslant \sum_{x<p \leqslant x \log x} p^{-1}=\log (\log (x \log x) /(\log x))+o(1)
$$

(cf. Chebyshev [1]). But $\log (\log (x \log x) /(\log x))=\log (1+o(1))$, which is $o(1)$. Thus the sum \sum_{1} is $o(1)$.

For \sum_{2} we revert to an earlier order of summation:

$$
\begin{equation*}
\sum_{2}=\sum_{c \leqslant x+1} \varphi^{+}(c) \sum_{\substack{p \equiv \pm 1 \bmod c \\ p>x \log x}} p^{-2} \tag{22}
\end{equation*}
$$

We then rewrite the inner sum using Abel summation:

$$
\begin{equation*}
\sum_{\substack{p \equiv \pm 1 \bmod c \\ p>x \log x}} p^{-2}=\left.\frac{\pi(y ; c, \pm 1)}{y^{2}}\right|_{x \log x} ^{\infty}+2 \int_{x \log x}^{\infty} \frac{\pi(y ; c, \pm 1)}{y^{3}} d y \tag{23}
\end{equation*}
$$

where $\pi(y ; c, \pm 1)$ is the number of primes $\leqslant y$ congruent to $\pm 1 \bmod c$. By the strong form of the Brun-Titchmarsh theorem due to Montgomery and Vaughan [3], we have

$$
\begin{equation*}
\pi(y ; c, \pm 1) \leqslant \frac{4 y}{\varphi(c) \log (y / c)} \tag{24}
\end{equation*}
$$

Using (24) in (23) and then inserting the result in (22), we see that

$$
\sum_{2} \leqslant \sum_{c \leqslant x+1} 8 \int_{x \log x}^{\infty} \frac{d y}{y^{2} \log (y / c)}
$$

the term $-\pi(x \log x ; c, \pm 1) /(x \log x)^{2}$ having simply been omitted since it is negative. For $x>20$ we have $(x \log x) / c>e$; hence the integrand is $\leqslant y^{-2}$ and the integal is $\leqslant(x \log x)^{-1}$. It follows that the sum over c is $\leqslant(1+1 / x) /(\log x)$ and thus $o(1)$.

Finally we prove (20). The summation on the left-hand side of (20) is restricted to $p^{d} \leqslant x$, so if $c \mid p^{d} \pm 1$ then $c \leqslant x+1$. Hence $\Phi\left(p^{d}, x\right)$ coincides with p^{-d} / d by (11) and (16), so

$$
\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right)=\sum_{p^{d} \leqslant x} p^{-d} / d
$$

We may write this identity as

$$
\begin{equation*}
\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right)=\sum_{p \leqslant x} \sum_{d \leqslant \log x}^{\log p} p^{-d} / d \tag{25}
\end{equation*}
$$

while

$$
\begin{equation*}
\log \prod_{p \leqslant x}\left(1-p^{-1}\right)^{-1}=\sum_{p \leqslant x} \sum_{d \geqslant 1} p^{-d} / d \tag{26}
\end{equation*}
$$

Subtracting (25) from (26), we see that

$$
\begin{equation*}
\log \prod_{p \leqslant x}\left(1-p^{-1}\right)^{-1}-\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right)=\sum_{p \leqslant x} \sum_{p^{d}>x} p^{-d} / d \tag{27}
\end{equation*}
$$

If $p \leqslant x$ and $p^{d}>x$ then $d \geqslant 2$, so (27) gives

$$
\log \prod_{p \leqslant x}\left(1-p^{-1}\right)^{-1}-\sum_{p^{d} \leqslant x} \Phi\left(p^{d}, x\right) \leqslant \sum_{\substack{p^{d}>x \\ d \geqslant 2}} p^{-d} / d
$$

The left-hand side is positive by (27), and as noted previously, the right-hand side is the tail of a convergent double series, and therefore $o(1)$. Hence the left-hand side is $o(1)$, and (20) follows.

5 The special value

For the sake of completeness, we recall the standard calculation of $\zeta_{c}^{+}(2)$ in terms of generalized Bernoulli numbers. Write $\zeta_{c}^{+}(s)$ as a product of Dirichlet L-functions associated to even Dirichlet characters to the modulus c :

$$
\begin{equation*}
\zeta_{c}^{+}(s)=\prod_{\substack{\chi \bmod c \\ \chi(-1)=1}} L(s, \chi) \tag{28}
\end{equation*}
$$

We restrict attention to primitive characters by writing

$$
\begin{equation*}
\zeta_{c}^{+}(s)=\prod_{q \mid c} \prod_{\substack{\chi \bmod q \\ \chi(-1)=1}}^{*} L(s, \chi) \prod_{p \mid c}\left(1-\chi(p) p^{-s}\right) \tag{29}
\end{equation*}
$$

Now recall the functional equation of $L(s, \chi)$: For χ even and primitive of conductor q, let

$$
\begin{equation*}
\Lambda(s, \chi)=q^{s / 2} \pi^{-s / 2} \Gamma(s / 2) L(s, \chi) \tag{30}
\end{equation*}
$$

then

$$
\begin{equation*}
\Lambda(s, \chi)=W(\chi) \Lambda(1-s, \bar{\chi}) \tag{31}
\end{equation*}
$$

where $W(\chi)$ is the root number of χ. On the other hand, according to a classic formula we have $L(1-k, \chi)=-b_{k, \chi} / k$ for integers $k \geqslant 2$ (and actually even for $k=1$ if $\chi \neq 1$). Taking $k=2$ and applying (31), we obtain

$$
\begin{equation*}
L(2, \chi)=\pi^{2} b_{2, \bar{\chi}} W(\chi) / q^{3 / 2} \tag{32}
\end{equation*}
$$

Next recall that if χ has order $\geqslant 3$ then $W(\chi) W(\bar{\chi})=1$, while if $\chi^{2}=1$ then $W(\chi)=1$. Thus on substituting (32) in (29), we obtain

$$
\begin{equation*}
\zeta_{c}^{+}(2)=\prod_{q \mid c}\left(\pi^{2} / q^{3 / 2}\right)^{\psi^{+}(q)} \prod_{\substack{\chi \bmod q \\ \chi(-1)=1}}^{*} b_{2, \chi} \prod_{p \mid c}\left(1-\chi(p) p^{-2}\right) \tag{33}
\end{equation*}
$$

where $\psi^{+}(q)$ is the number of even Dirichlet characters which are primitive of conductor q. Since $\sum_{q \mid c} \psi^{+}(q)=\varphi^{+}(c)$ we have

$$
\begin{equation*}
\prod_{q \mid c}\left(\pi^{2}\right)^{\psi^{+}(q)}=\pi^{\phi(c)} \tag{34}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\prod_{q \mid c} q^{\psi^{+}(q)}=d_{c}^{+} \tag{35}
\end{equation*}
$$

as one sees, for example, by observing that the exponential factor in the functional equation of the Dedekind zeta function of K_{c}^{+}is $\left(d_{c}^{+}\right)^{s / 2}$, while the exponential factor in (31) or rather (30) is $q^{s / 2}$. On substituting (34) and (35) in (33), we obtain (4).

6 A question

For $c \geqslant 3$, let ξ_{c} be the quadratic Hecke character of K_{c}^{+}associated to the extension K_{c} / K_{c}^{+}, and let $L\left(s, \xi_{c}\right)$ be the corresponding Hecke L-function. Write $L_{c}(s)$ for the imprimitive Hecke L-function obtained from $L\left(s, \xi_{c}\right)$ by deleting the Euler factors at the primes dividing c. Also put $L_{c}(s)=1$ for $c=1$ or 2 . Then $L_{c}(s)=\zeta_{c}(s) / \zeta_{c}^{+}(s)$ in all cases. Hence combining (1) with (12), we obtain

$$
\zeta(s)^{-1}=\prod_{c \geqslant 1} L_{c}(s)
$$

The infinite product converges for $\Re(s)>2$, but $1 / \zeta(s)$ is holomorphic and nonvanishing for $\Re(s)>1$. Is the true region of convergence perhaps much larger than $\Re(s)>2$? We can offer only a minimal enlargement:

Theorem 2. The product $\prod_{c \geqslant 1} L_{c}(s)$ converges to $\zeta(s)^{-1}$ for $\Re(s) \geqslant 2$.
Proof. For integers $c \geqslant 3$ and primes $p \nmid c$, put $\kappa(p, c)=\xi_{c}(\mathfrak{p})$, where \mathfrak{p} is a prime ideal of K_{c}^{+}lying above p. If $c=1$ or 2 put $\kappa(p, c)=0$. Then

$$
L_{c}(s)=\prod_{p \nmid c}\left(1-\kappa(p, c) p^{-f^{+}(p, c) s}\right)^{-\varphi^{+}(p, c) / f^{+}(p, c)}
$$

for $\Re(s)>1$, and consequently

$$
\log \prod_{c \leqslant x+1} L_{c}(s)=\sum_{c \leqslant x+1} \sum_{p \nmid c} \frac{\varphi^{+}(c)}{f^{+}(p, c)} \sum_{m \geqslant 1} \kappa(p, c)^{m} \frac{p^{-m f^{+}(p, c) s}}{m} .
$$

Making the change of variables $d=m f^{+}(p, c)$ as before, we obtain

$$
\log \prod_{c \leqslant x+1} L_{c}^{+}(s)=\sum_{p} \sum_{\substack{d \geqslant 1}} \sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \kappa(p, c)^{d / f^{+}(p, c)} \frac{p^{-d s}}{d}
$$

(note that the condition $c \mid p^{d} \pm 1$ means precisely that $f^{+}(p, c) \mid d$). All of this is valid for $\Re(s)>1$, but we now assume that $\Re(s) \geqslant 2$ or simply that $\Re(s)=2$, since the case $\Re(s)>2$ has already been dealt with. Put

$$
\begin{equation*}
\Psi\left(p^{d}, x, s\right)=\frac{p^{-d s}}{d} \sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \kappa(p, c)^{d / f^{+}(p, c)} \tag{36}
\end{equation*}
$$

Comparing (36) with (16), we see that

$$
\begin{equation*}
\left|\Psi\left(p^{d}, x, s\right)\right| \leqslant \Phi\left(p^{d}, x\right) \tag{37}
\end{equation*}
$$

This relation will largely reduce the proof to our previous estimates. Indeed, as in (17), we can write

$$
\log \prod_{c \leqslant x+1} L_{c}(s)=\sum_{\substack{p^{d}>x \\ d \geqslant 2}} \Psi\left(p^{d}, x, s\right)+\sum_{p>x} \Psi(p, x, s)+\sum_{p^{d} \leqslant x} \Psi\left(p^{d}, x, s\right)
$$

and the first and second sums on the right-hand side are $o(1)$ by (18), (19), and (37). Thus to prove the theorem it suffices to show that

$$
\begin{equation*}
\sum_{p^{d} \leqslant x} \Psi\left(p^{d}, x, s\right)=\log \zeta(s)^{-1}+o(1) \tag{38}
\end{equation*}
$$

The argument will be similar to the argument for (20).
The first point is that the condition $p^{d} \leqslant x$ in (38) renders the condition $c \leqslant x+1$ superfluous in (36). Thus in the context of (38) we have

$$
\begin{equation*}
\Psi\left(p^{d}, x, s\right)=\frac{p^{-d s}}{d} \sum_{c \mid p^{d} \pm 1} \varphi^{+}(c) \kappa(p, c)^{d / f^{+}(p, c)}, \tag{39}
\end{equation*}
$$

Now suppose that $c \mid p^{d} \pm 1$ (in other words that $f^{+}(p, c) \mid d$) and that $c \geqslant 3$. The conditions $p^{d} \equiv-1 \bmod c$ and $\kappa(p, c)^{d / f^{+}(p, c)}=-1$ are equivalent, because both are equivalent to the assertion that $f(p, c)=2 f^{+}(p, c)$ and $d / f^{+}(p, c)$ is odd. It follows that the complementary conditions, namely $p^{d} \equiv 1 \bmod c$ and $\kappa(p, c)^{d / f^{+}(p, c)}=1$, are also equivalent, whence

$$
\begin{equation*}
\sum_{\substack{c>3 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \kappa(p, c)^{d / f^{+}(p, c)}=\frac{1}{2} \sum_{\substack{c>3 \\ c \mid p^{d}-1}} \varphi(c)-\frac{1}{2} \sum_{\substack{c \gtrless 3 \\ c \mid p^{d}+1}} \varphi(c) . \tag{40}
\end{equation*}
$$

As before, the restriction $c \geqslant 3$ can be eliminated throughout (40), because if $c=1$ or 2 then $\kappa(p, c)=0$.

With the restriction $c \geqslant 3$ removed, (40) implies that

$$
\sum_{c \mid p^{d} \pm 1} \varphi^{+}(c) \kappa(p, c)^{d / f^{+}(p, c)}=\frac{1}{2}\left(\left(p^{d}-1\right)-\left(p^{d}+1\right)\right)=-1,
$$

and therefore (39) gives

$$
\begin{equation*}
\sum_{p^{d} \leqslant x} \Psi\left(p^{d}, x, s\right)=-\sum_{p \leqslant x} \sum_{d \leqslant \log x} \frac{p^{-d s}}{d} . \tag{41}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\log \zeta(s)^{-1}=-\sum_{p} \sum_{d \geqslant 1} \frac{p^{-d s}}{d} \tag{42}
\end{equation*}
$$

Taking the absolute value of the difference of (41) and (42), we find

$$
\left|\sum_{p^{d} \leqslant x} \Psi\left(p^{d}, x, s\right)-\zeta(s)^{-1}\right| \leqslant \sum_{p^{d}>x} \frac{p^{-d s}}{d} .
$$

Since $\Re(s) \geqslant 2$ the right-hand side is the tail of a convergent series (namely the Dirichlet series for $\log \zeta(s))$ and is therefore $o(1)$. Thus (38) follows and the proof of the theorem is complete.

References

1. P. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers nférieurs à une limite donnée Mém. Acad. Imp. Sci. Pétersbourg, 6 (1851), 141-157.
2. F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. reine angew. Math., 78 (1874), 46-62.
3. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika, 20 (1973), 119-134.
4. Y. Taniyama, L-functions of number fields and zeta functions of abelian varieties, J. Math. Soc. Japan, 9 (1957), 330-366.
5. Y. Yang, Modular units and cuspidal divisor class groups of $X_{1}(N)$, J. of Algebra, 322 (2009), 514-553.
6. J. Yu, A cuspidal class number formula for the modular curves $X_{1}(N)$, Math. Ann., 252 (1980), 197-216.

[^0]: David E. Rohrlich
 Department of Mathematics and Statistics, Boston University, Boston MA 02215, USA
 e-mail: rohrlich@math.bu.edu

