A Taniyama product for the Riemann zeta function

David E. Rohrlich

Abstract A Taniyama product for the Riemann zeta function is defined and an analogue of Mertens' theorem is proved.

1 Introduction

Tucked unobtrusively into Taniyama's memoir [4] on compatible families of ℓ -adic representations is a curious identity expressing the zeta function of such a family as an infinite product of imprimitive Artin L-functions ([4], p. 356, Theorem 3). The simplest case of the identity (arising from the cyclotomic character, or from its inverse, depending on one's conventions) is

$$\zeta(s-1)/\zeta(s) = \prod_{c \ge 1} \zeta_c(s), \tag{1}$$

where $\zeta(s)$ is the Riemann zeta function and $\zeta_c(s)$ is the imprimitive Dedekind zeta function – imprimitive because the Euler factors at the primes dividing care removed – of the cyclotomic field K_c generated over \mathbb{Q} by the cth roots of unity. Thus $\zeta_1(s)$ is $\zeta(s)$ itself, $\zeta_2(s)$ is $(1-2^{-s})\zeta(s)$, and so on. The infinite product converges for $\Re(s) > 2$.

In this note we modify (1) slightly so as to obtain a product for $\zeta(s)$ rather than $\zeta(s-1)/\zeta(s)$. Let K_c^+ be the maximal totally real subfield of K_c , and let $\zeta_c^+(s)$ be the Dedekind zeta function of K_c^+ with the Euler factors at the primes dividing c removed. Then

David E. Rohrlich

Department of Mathematics and Statistics, Boston University, Boston MA 02215, USA e-mail: rohrlich@math.bu.edu

D. E. Rohrlich

$$\zeta(s) = \prod_{c \ge 1} \zeta_c^+(s+1). \tag{2}$$

Like the traditional Euler product

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}, \tag{3}$$

the Taniyama product (2) converges for $\Re(s) > 1$.

The main result of this note can be viewed as an analogue of Mertens' theorem [2]. It bears the same relation to (2) as Mertens' theorem does to (3), and Mertens' theorem itself figures prominently in the the proof. Let γ denote the Euler-Mascheroni constant.

Theorem 1. $\prod_{c \leq x} \zeta_c^+(2) \sim e^{\gamma} \log x$.

Of course $\zeta_c^+(2)$ can be computed explicitly in terms of generalized Bernoulli numbers. For a primitive Dirichlet character χ of conductor q, let

$$b_{2,\chi} = \sum_{j=1}^{q} \chi(j) (j^2/q - j + q/6).$$

Also write d_c^+ for the discriminant of K_c^+ , and let $\varphi(c)$ be the cardinality of $(\mathbb{Z}/c\mathbb{Z})^{\times}$. For the sake of a succinct formula we put

$$\phi(c) = \begin{cases} \varphi(c) & \text{if } c \ge 3\\ 2 & \text{if } c = 1 \text{ or } 2. \end{cases}$$

Then

$$\zeta_c^+(2) = \frac{\pi^{\phi(c)}}{d_c^{+3/2}} \prod_{q|c} \prod_{\substack{\chi \mod q \\ \chi(-1)=1}}^* b_{2,\chi} \prod_{p|c} (1-\chi(p)p^{-2}), \tag{4}$$

where the asterisk indicates that in the second product, χ runs over *primitive* characters of conductor q.

Expressions similar to (4) have arisen in other contexts. For example, nearly the same triple product occurs in a formula of Yu [6] for the order of a certain cuspidal divisor class group of the modular curve $X_1(N)$ (see also Yang [5], p. 521). Even so, the differences between Yu's formula and (4) appear to be significant enough to preclude a straightforward interpretation of Theorem 1 as an asymptotic average of cuspidal divisor class numbers.

It is a pleasure to thank the referee for a careful reading of the manuscript.

2 Taniyama's identity

A proof of (1) is of course subsumed in Taniyama's proof of his general formula, but we will nonetheless sketch a proof here before going on to the modification (2). For a prime p not dividing c let f(p, c) be the order of the residue class of p in $(\mathbb{Z}/c\mathbb{Z})^{\times}$. Also, write Z(s) for the right-hand side of (1). Then Z(s) can be written as the double product

$$Z(s) = \prod_{c \ge 1} \prod_{p \nmid c} (1 - p^{-sf(p,c)})^{-\varphi(c)/f(p,c)},$$
(5)

where the inner product is $\zeta_c(s)$ and runs over primes not dividing c. The proof of (1) amounts to reversing the order of multiplication in the double product in (5). By choosing a branch of $\log Z(s)$ we can do the computation additively, and the absolute convergence of the resulting triple sum in the right half-plane $\Re(s) > 2$ will show a posteriori that the original double product is meaningful in this region and that the calculation is legitimate.

We define our branch of $\log Z(s)$ by

$$\log Z(s) = \sum_{c \ge 1} \sum_{p \nmid c} \frac{\varphi(c)}{f(p,c)} \sum_{m \ge 1} \frac{p^{-mf(p,c)s}}{m}.$$
(6)

Putting d = mf(p, c) and summing over $d \ge 1$, we obtain

$$\log Z(s) = \sum_{c \ge 1} \sum_{d \ge 1} \sum_{\substack{p \nmid c \\ f(p,c) \mid d}} \frac{\varphi(c)}{d} p^{-ds}$$

or equivalently (since f(p, c)|d if and only if $p^d \equiv 1 \mod c$)

$$\log Z(s) = \sum_{p} \sum_{d \ge 1} \sum_{\substack{c \ge 1 \\ c \mid p^d - 1}} \frac{\varphi(c)}{d} p^{-ds}.$$

As $\sum_{m|n} \varphi(m) = n$, we conclude that

$$\log Z(s) = \sum_{p} \sum_{d \ge 1} d^{-1} p^{-ds} (p^d - 1)$$

The inner sum equals $\log((1-p^{1-s})^{-1}(1-p^{-s}))$, and (1) follows.

3 The modification

The proof of (2) is much the same. Put $\varphi^+(c) = [K_c^+ : \mathbb{Q}]$, so that $\varphi^+(c)$ is 1 if c = 1 or 2 and $\varphi(c)/2$ otherwise. (Note also that $\varphi^+(c) = \phi(c)/2$, where $\phi(c)$ is as in the introduction.) If p is a prime not dividing c, then the order in $\operatorname{Gal}(K_c^+/\mathbb{Q})$ of a Frobenius at p will be denoted $f^+(p,c)$. Of course $f^+(p,c)$ is also the order of the coset represented by p in the quotient of $(\mathbb{Z}/c\mathbb{Z})^{\times}$ by the image of $\{\pm 1\}$. Let $Z^+(s)$ denote the right-hand side of (2), and write $Z^+(s)$ as a double product:

$$Z^{+}(s) = \prod_{c \ge 1} \prod_{p \nmid c} (1 - p^{-sf^{+}(p,c)})^{-\varphi^{+}(c)/f^{+}(p,c)}.$$
(7)

Define a branch of $\log Z^+(s)$ by setting

$$\log Z^{+}(s) = \sum_{c \ge 1} \sum_{p \nmid c} \frac{\varphi^{+}(c)}{f^{+}(p,c)} \sum_{m \ge 1} \frac{p^{-mf^{+}(p,c)s}}{m}.$$
 (8)

The calculation will again show that the triple sum is absolutely convergent for $\Re(s) > 2$. Putting $d = mf^+(p, c)$ and summing over $d \ge 1$, we find

$$\log Z^+(s) = \sum_{c \ge 1} \sum_{d \ge 1} \sum_{\substack{p \nmid c \\ f^+(p,c) \mid d}} \frac{\varphi^+(c)}{d} p^{-ds}$$

as before. But the condition $f^+(p,c)|d$ means $c|p^d-1$ or $c|p^d+1$, so we get

$$\log Z^{+}(s) = \sum_{p} \sum_{d \ge 1} \sum_{c \mid (p^{d} \pm 1)} \frac{\varphi^{+}(c)}{d} p^{-ds}.$$
 (9)

We emphasize that the innermost sum is the sum over all c such that at least one of the conditions $c|p^d - 1$ and $c|p^d + 1$ is satisfied.

If $c \ge 3$ then the conditions $c|p^d - 1$ and $c|p^d + 1$ are mutually exclusive and $\varphi^+(c) = \varphi(c)/2$, so we have

$$\sum_{\substack{c \ge 3 \\ c \mid p^d \pm 1}} \varphi^+(c) = \frac{1}{2} \sum_{\substack{c \ge 3 \\ c \mid p^d - 1}} \varphi(c) + \frac{1}{2} \sum_{\substack{c \ge 3 \\ c \mid p^d + 1}} \varphi(c).$$
(10)

On the other hand, if c = 1 or 2 then the conditions $c|p^d - 1$ and $c|p^d + 1$ are both satisfied (for if c = 2 then p is odd), but $\varphi^+(c) = 1$. So equation (10) is correct without the restriction $c \ge 3$, and the identity $\sum_{m|n} \varphi(m) = n$ gives

$$\sum_{c \mid (p^d \pm 1)} \varphi^+(c) = \frac{1}{2} ((p^d - 1) + (p^d + 1)) = p^d.$$
(11)

Multiplying through by p^{-ds}/d in (11) and inserting the result in (9), we obtain

$$\log Z^+(s) = \sum_p \log(1 - p^{1-s})^{-1},$$

or in other words

$$\prod_{c \ge 1} \zeta_c^+(s) = \zeta(s-1) \tag{12}$$

for $\Re(s) > 2$. Replacing s by s + 1 gives (2) for $\Re(s) > 1$.

4 The analogue of Mertens' theorem

We shall prove that

$$\prod_{c \leqslant x+1} \zeta_c^+(2) \sim e^\gamma \log x.$$
(13)

Theorem 1 is an immediate consequence of (13), because $\log(x-1) \sim \log x$.

We proceed as in the derivation of (2), but with two crucial changes: first, we take s = 2, and second, c now runs over the *finite* set of positive integers $\leq x + 1$. Thus (8) is replaced by

$$\log \prod_{c \leqslant x+1} \zeta_c^+(2) = \sum_{c \leqslant x+1} \sum_{p \nmid c} \frac{\varphi^+(c)}{f^+(p,c)} \sum_{m \geqslant 1} \frac{p^{-2mf^+(p,c)}}{m}.$$
 (14)

Next we make the change of variables $d = mf^+(p, c)$. Since c runs over a finite set and the Dirichlet series for $\log \zeta_c^+(s)$ is absolutely convergent for $\Re(s) > 1$ and in particular for s = 2, we can rearrange the order of summation to obtain

$$\log \prod_{c \leqslant x+1} \zeta_c^+(2) = \sum_p \sum_{d \geqslant 1} \sum_{\substack{c \leqslant x+1 \\ c \mid p^d \pm 1}} \varphi^+(c) \frac{p^{-2d}}{d}$$
(15)

as in (9). For the sake of notational simplicity, we conflate the double sum over p and d into a single sum over p^d , and we put

D. E. Rohrlich

$$\Phi(p^{d}, x) = \frac{p^{-2d}}{d} \sum_{\substack{c \le x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c).$$
(16)

Then (15) can be written in the form

$$\log \prod_{c \leqslant x+1} \zeta_c^+(2) = \sum_{\substack{p^d > x \\ d \ge 2}} \Phi(p^d, x) + \sum_{p > x} \Phi(p, x) + \sum_{p^d \leqslant x} \Phi(p^d, x).$$
(17)

We shall prove the following assertions:

$$\sum_{\substack{p^d > x \\ d \ge 2}} \Phi(p^d, x) = o(1).$$
(18)

$$\sum_{p>x} \Phi(p,x) = o(1).$$
(19)

$$\sum_{p^d \leqslant x} \Phi(p^d, x) = \log \prod_{p \leqslant x} (1 - p^{-1})^{-1} + o(1).$$
(20)

Granting these statements and using them in (17), we find that

$$\log \prod_{c \leqslant x+1} \zeta_c^+(2) = \log \prod_{p \leqslant x} (1-p^{-1})^{-1} + o(1),$$

whence exponentiation and an appeal to Mertens' theorem give (13).

To prove (18), we first note that

$$\sum_{\substack{c \leqslant x+1\\c \mid p^d \pm 1}} \varphi^+(c) \leqslant p^d.$$
(21)

by (11). Thus $\Phi(p^d, x) \leq p^{-d}/d$ by (16), whence the left-hand side of (18) is bounded by the sum of the terms with $p^d > x$ in the convergent double series $\sum_p \sum_{d \ge 2} p^{-d}/d$. Since the tail of a convergent series is o(1), we obtain (18). Next we prove (19). Take x > 20. It suffices to show that the sums

$$\sum\nolimits_1 = \sum\limits_{x$$

and

$$\sum\nolimits_2 = \sum\limits_{p > x \log x} \varPhi(p, x)$$

are both o(1). Appealing once again to (21) and (16), we see that

$$\sum\nolimits_1 \leqslant \sum\limits_{x$$

(cf. Chebyshev [1]). But $\log(\log(x \log x)/(\log x)) = \log(1 + o(1))$, which is o(1). Thus the sum \sum_{1} is o(1). For \sum_{2} we revert to an earlier order of summation:

$$\sum_{2} = \sum_{c \leqslant x+1} \varphi^{+}(c) \sum_{\substack{p \equiv \pm 1 \mod c \\ p > x \log x}} p^{-2}.$$
 (22)

We then rewrite the inner sum using Abel summation:

$$\sum_{\substack{p \equiv \pm 1 \mod c \\ p > x \log x}} p^{-2} = \frac{\pi(y; c, \pm 1)}{y^2} \Big|_{x \log x}^{\infty} + 2 \int_{x \log x}^{\infty} \frac{\pi(y; c, \pm 1)}{y^3} \, dy, \tag{23}$$

where $\pi(y; c, \pm 1)$ is the number of primes $\leq y$ congruent to $\pm 1 \mod c$. By the strong form of the Brun-Titchmarsh theorem due to Montgomery and Vaughan [3], we have

$$\pi(y;c,\pm 1) \leqslant \frac{4y}{\varphi(c)\log(y/c)}.$$
(24)

Using (24) in (23) and then inserting the result in (22), we see that

$$\sum\nolimits_2 \leqslant \sum\limits_{c \leqslant x+1} 8 \int_{x \log x}^\infty \frac{dy}{y^2 \log(y/c)},$$

the term $-\pi(x\log x; c, \pm 1)/(x\log x)^2$ having simply been omitted since it is negative. For x > 20 we have $(x \log x)/c > e$; hence the integrand is $\leq y^{-2}$ and the integal is $\leq (x \log x)^{-1}$. It follows that the sum over c is $\leq (1+1/x)/(\log x)$ and thus o(1).

Finally we prove (20). The summation on the left-hand side of (20) is restricted to $p^d \leq x$, so if $c \mid p^d \pm 1$ then $c \leq x + 1$. Hence $\Phi(p^d, x)$ coincides with p^{-d}/d by (11) and (16), so

$$\sum_{p^d \leqslant x} \Phi(p^d, x) = \sum_{p^d \leqslant x} p^{-d} / d.$$

We may write this identity as

$$\sum_{p^d \leqslant x} \Phi(p^d, x) = \sum_{p \leqslant x} \sum_{d \leqslant \frac{\log x}{\log p}} p^{-d}/d,$$
(25)

while

$$\log \prod_{p \leqslant x} (1 - p^{-1})^{-1} = \sum_{p \leqslant x} \sum_{d \ge 1} p^{-d} / d.$$
 (26)

Subtracting (25) from (26), we see that

$$\log \prod_{p \leqslant x} (1 - p^{-1})^{-1} - \sum_{p^d \leqslant x} \Phi(p^d, x) = \sum_{p \leqslant x} \sum_{p^d > x} p^{-d} / d$$
(27)

If $p \leq x$ and $p^d > x$ then $d \geq 2$, so (27) gives

$$\log \prod_{p \leqslant x} (1 - p^{-1})^{-1} - \sum_{\substack{p^d \leqslant x}} \Phi(p^d, x) \leqslant \sum_{\substack{p^d > x \\ d \ge 2}} p^{-d} / d.$$

The left-hand side is positive by (27), and as noted previously, the right-hand side is the tail of a convergent double series, and therefore o(1). Hence the left-hand side is o(1), and (20) follows.

5 The special value

For the sake of completeness, we recall the standard calculation of $\zeta_c^+(2)$ in terms of generalized Bernoulli numbers. Write $\zeta_c^+(s)$ as a product of Dirichlet L-functions associated to even Dirichlet characters to the modulus c:

$$\zeta_c^+(s) = \prod_{\substack{\chi \bmod c \\ \chi(-1)=1}} L(s,\chi).$$
(28)

We restrict attention to primitive characters by writing

$$\zeta_c^+(s) = \prod_{\substack{q|c}} \prod_{\substack{\chi \bmod q \\ \chi(-1)=1}}^* L(s,\chi) \prod_{\substack{p|c}} (1-\chi(p)p^{-s}).$$
(29)

Now recall the functional equation of $L(s, \chi)$: For χ even and primitive of conductor q, let

$$\Lambda(s,\chi) = q^{s/2} \pi^{-s/2} \Gamma(s/2) L(s,\chi);$$
(30)

then

$$\Lambda(s,\chi) = W(\chi)\Lambda(1-s,\overline{\chi}),\tag{31}$$

where $W(\chi)$ is the root number of χ . On the other hand, according to a classic formula we have $L(1-k,\chi) = -b_{k,\chi}/k$ for integers $k \ge 2$ (and actually even for k = 1 if $\chi \ne 1$). Taking k = 2 and applying (31), we obtain

$$L(2,\chi) = \pi^2 b_{2,\overline{\chi}} W(\chi) / q^{3/2}.$$
 (32)

Next recall that if χ has order ≥ 3 then $W(\chi)W(\overline{\chi}) = 1$, while if $\chi^2 = 1$ then $W(\chi) = 1$. Thus on substituting (32) in (29), we obtain

$$\zeta_c^+(2) = \prod_{q|c} (\pi^2/q^{3/2})^{\psi^+(q)} \prod_{\substack{\chi \mod q \\ \chi(-1)=1}}^* b_{2,\chi} \prod_{p|c} (1-\chi(p)p^{-2}),$$
(33)

where $\psi^+(q)$ is the number of even Dirichlet characters which are primitive of conductor q. Since $\sum_{q|c} \psi^+(q) = \varphi^+(c)$ we have

$$\prod_{q|c} (\pi^2)^{\psi^+(q)} = \pi^{\phi(c)}.$$
(34)

Furthermore

$$\prod_{q|c} q^{\psi^+(q)} = d_c^+, \tag{35}$$

as one sees, for example, by observing that the exponential factor in the functional equation of the Dedekind zeta function of K_c^+ is $(d_c^+)^{s/2}$, while the exponential factor in (31) or rather (30) is $q^{s/2}$. On substituting (34) and (35) in (33), we obtain (4).

6 A question

For $c \ge 3$, let ξ_c be the quadratic Hecke character of K_c^+ associated to the extension K_c/K_c^+ , and let $L(s,\xi_c)$ be the corresponding Hecke L-function. Write $L_c(s)$ for the imprimitive Hecke L-function obtained from $L(s,\xi_c)$ by deleting the Euler factors at the primes dividing c. Also put $L_c(s) = 1$ for c = 1 or 2. Then $L_c(s) = \zeta_c(s)/\zeta_c^+(s)$ in all cases. Hence combining (1) with (12), we obtain

$$\zeta(s)^{-1} = \prod_{c \ge 1} L_c(s).$$

The infinite product converges for $\Re(s) > 2$, but $1/\zeta(s)$ is holomorphic and nonvanishing for $\Re(s) > 1$. Is the true region of convergence perhaps much larger than $\Re(s) > 2$? We can offer only a minimal enlargement:

D. E. Rohrlich

Theorem 2. The product $\prod_{c \ge 1} L_c(s)$ converges to $\zeta(s)^{-1}$ for $\Re(s) \ge 2$.

Proof. For integers $c \ge 3$ and primes $p \nmid c$, put $\kappa(p, c) = \xi_c(\mathfrak{p})$, where \mathfrak{p} is a prime ideal of K_c^+ lying above p. If c = 1 or 2 put $\kappa(p, c) = 0$. Then

$$L_{c}(s) = \prod_{p \nmid c} (1 - \kappa(p, c)p^{-f^{+}(p, c)s})^{-\varphi^{+}(p, c)/f^{+}(p, c)}$$

for $\Re(s) > 1$, and consequently

$$\log \prod_{c \leqslant x+1} L_c(s) = \sum_{c \leqslant x+1} \sum_{p \nmid c} \frac{\varphi^+(c)}{f^+(p,c)} \sum_{m \ge 1} \kappa(p,c)^m \, \frac{p^{-mf^+(p,c)s}}{m}.$$

Making the change of variables $d = mf^+(p, c)$ as before, we obtain

$$\log \prod_{c \leqslant x+1} L_c^+(s) = \sum_p \sum_{d \geqslant 1} \sum_{\substack{c \leqslant x+1 \\ c \mid p^d \pm 1}} \varphi^+(c) \,\kappa(p,c)^{d/f^+(p,c)} \,\frac{p^{-ds}}{d}$$

(note that the condition $c|p^d \pm 1$ means precisely that $f^+(p,c)|d$). All of this is valid for $\Re(s) > 1$, but we now assume that $\Re(s) \ge 2$ or simply that $\Re(s) = 2$, since the case $\Re(s) > 2$ has already been dealt with. Put

$$\Psi(p^{d}, x, s) = \frac{p^{-ds}}{d} \sum_{\substack{c \leqslant x+1 \\ c \mid p^{d} \pm 1}} \varphi^{+}(c) \,\kappa(p, c)^{d/f^{+}(p, c)}.$$
 (36)

Comparing (36) with (16), we see that

$$|\Psi(p^d, x, s)| \leqslant \Phi(p^d, x). \tag{37}$$

This relation will largely reduce the proof to our previous estimates. Indeed, as in (17), we can write

$$\log \prod_{c \leqslant x+1} L_c(s) = \sum_{\substack{p^d > x \\ d \ge 2}} \Psi(p^d, x, s) + \sum_{p > x} \Psi(p, x, s) + \sum_{p^d \leqslant x} \Psi(p^d, x, s),$$

and the first and second sums on the right-hand side are o(1) by (18), (19), and (37). Thus to prove the theorem it suffices to show that

$$\sum_{p^d \leqslant x} \Psi(p^d, x, s) = \log \zeta(s)^{-1} + o(1).$$
(38)

The argument will be similar to the argument for (20).

The first point is that the condition $p^d \leq x$ in (38) renders the condition $c \leq x + 1$ superfluous in (36). Thus in the context of (38) we have

$$\Psi(p^{d}, x, s) = \frac{p^{-ds}}{d} \sum_{c \mid p^{d} \pm 1} \varphi^{+}(c) \,\kappa(p, c)^{d/f^{+}(p, c)}, \tag{39}$$

Now suppose that $c|p^d \pm 1$ (in other words that $f^+(p,c)|d$) and that $c \ge 3$. The conditions $p^d \equiv -1 \mod c$ and $\kappa(p,c)^{d/f^+(p,c)} = -1$ are equivalent, because both are equivalent to the assertion that $f(p,c) = 2f^+(p,c)$ and $d/f^+(p,c)$ is odd. It follows that the complementary conditions, namely $p^d \equiv 1 \mod c$ and $\kappa(p,c)^{d/f^+(p,c)} = 1$, are also equivalent, whence

$$\sum_{\substack{c \ge 3\\c|p^d \pm 1}} \varphi^+(c) \,\kappa(p,c)^{d/f^+(p,c)} = \frac{1}{2} \sum_{\substack{c \ge 3\\c|p^d - 1}} \varphi(c) - \frac{1}{2} \sum_{\substack{c \ge 3\\c|p^d + 1}} \varphi(c). \tag{40}$$

As before, the restriction $c \ge 3$ can be eliminated throughout (40), because if c = 1 or 2 then $\kappa(p, c) = 0$.

With the restriction $c \ge 3$ removed, (40) implies that

$$\sum_{c|p^d \pm 1} \varphi^+(c) \,\kappa(p,c)^{d/f^+(p,c)} = \frac{1}{2}((p^d - 1) - (p^d + 1)) = -1,$$

and therefore (39) gives

$$\sum_{p^d \leqslant x} \Psi(p^d, x, s) = -\sum_{p \leqslant x} \sum_{d \leqslant \frac{\log x}{\log p}} \frac{p^{-ds}}{d}.$$
(41)

On the other hand,

$$\log \zeta(s)^{-1} = -\sum_{p} \sum_{d \ge 1} \frac{p^{-ds}}{d}$$
(42)

Taking the absolute value of the difference of (41) and (42), we find

$$\left|\sum_{p^{d} \leqslant x} \Psi(p^{d}, x, s) - \zeta(s)^{-1}\right| \leqslant \sum_{p^{d} > x} \frac{p^{-ds}}{d}.$$

Since $\Re(s) \ge 2$ the right-hand side is the tail of a convergent series (namely the Dirichlet series for $\log \zeta(s)$) and is therefore o(1). Thus (38) follows and the proof of the theorem is complete.

11

References

- P. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers nférieurs à une limite donnée Mém. Acad. Imp. Sci. Pétersbourg, 6 (1851), 141–157.
- F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. reine angew. Math., 78 (1874), 46–62.
- H. L. Montgomery and R. C. Vaughan, *The large sieve*, Mathematika, **20** (1973), 119–134.
- Y. Taniyama, L-functions of number fields and zeta functions of abelian varieties, J. Math. Soc. Japan, 9 (1957), 330–366.
- 5. Y. Yang, Modular units and cuspidal divisor class groups of $X_1(N)$, J. of Algebra, **322** (2009), 514–553.
- 6. J. Yu, A cuspidal class number formula for the modular curves $X_1(N)$, Math. Ann., **252** (1980), 197–216.