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Abstract. Let K be a finite Galois extension of Q and let ρ be an irre-
ducible complex representation of Gal(K/Q). For an elliptic curve E over Q
let W (E, ρ) be the root number in the functional equation of L(s, E, ρ). We

give an example where ρ has dimension 4 and Schur index 1 but W (E, ρ) = 1
for all E over Q. The image of ρ has order 32.

In recent years, speculation about ranks of elliptic curves over Q has changed.
The constructions by Shafarevich and Tate [38] and by Ulmer [39] of elliptic curves
of high rank over function fields may have once encouraged a belief in the abundance
of elliptic curves over Q of high rank, but the current expectation seems to be that
the rank of an elliptic curve over Q is 0 or 1 with probability 1 (the “minimalist
conjecture”) and that the average rank is 1/2 (the “average rank conjecture”). See
for example [1], [2], [3], [4], [5], [6], [16], [18] [20], [21], [26], [27], [28], [29], [36], [40],
and many other works. The goal of the present work is to sound a cautionary note
regarding a possible extension of these conjectures to Artin representations.

Here an Artin representation of Q is understood as usual to be a continuous
homomorphism β : Gal(Q/Q) → GL(V ), where V is a finite-dimensional vector
space over C and Q is some fixed algebraic closure of Q which is taken to contain
all number fields under discussion. In practice we usually identify β with a repre-
sentation of Gal(K/Q) for some finite Galois extension K of Q such that β is trivial
on Gal(Q/K). Such a representation will be called an Artin representation also. In
fact suppose that we start with a finite Galois extension K of Q. Then for every
elliptic curve E over Q we can consider the natural action of Gal(K/Q) on the
Mordell-Weil group E(K). This action gives rise to a representation of Gal(K/Q)
on C ⊗ E(K), where the tensor product is taken over Z, and if ρ is an irreducible
representation of Gal(K/Q) over C, then we can speak of the multiplicity of the
Artin representation ρ in C⊗ E(K). We denote this multiplicity 〈ρ,E〉.

Henceforth we assume that ρ is self-dual. If ρ has odd dimension or nontrivial
determinant then at least conjecturally, there is always an elliptic curve E over Q
such that 〈ρ,E〉 is odd (cf. [32], p. 338, Prop. 11). However for certain self-dual
ρ of even dimension and trivial determinant it can happen that 〈E, ρ〉 is even for
every elliptic curve E over Q. This phenomenon is transparent in some instances
and less so in others, as we shall now explain.

Transparent examples are afforded by ρ with absolute Schur index m(ρ) > 1.
Indeed the representation of Gal(K/Q) on C⊗ E(K) is naturally a representation
by matrices with coefficients in Q (even in Z), and therefore m(ρ) divides 〈ρ,E〉.
For example, let Q denote the quaternion group of order 8, and suppose that
Gal(K/Q) ∼= Q. Take ρ to be the two-dimensional irreducible representation of
Gal(K/Q), unique up to isomorphism. Then ρ is symplectic, and consquently
m(ρ) = 2. Hence 〈ρ,E〉 is even for every elliptic curve E over Q. This assertion is
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nonvacuous in the sense that for a given ρ there does exist an E such that ρ occurs
in C⊗ E(K) (see [30], p. 129, Prop. 3 for an elementary construction).

Our less transparent examples are inferences from root numbers based on the
Birch-Swinnertion-Dyer conjecture. Here we are following a tradition that starts
with Birch and Stephens [7] in 1966 and has since grown to encompass root numbers
of abelian varieties of arbitrary dimension. See for example [8], [9], [10], [11],
[12], [13], [17], [22], [23], [24], [34] and many other papers. Let L(s, E, ρ) be the
tensor-product L-function associated to E and ρ, and let W (E, ρ) be the root
number associated to L(s, E, ρ), or rather to the local Weil-Deligne representations
σ′E/Qp

⊗ ρp underlying L(s, E, ρ), where p 6 ∞ and the notation is as in [31] or

[32]. The precise conjectural statement on which our examples depend is that if ρ
is self-dual then

(1) W (E, ρ) = (−1)〈ρ,E〉.

In general, (1) depends not only on the Birch-Swinnerton-Dyer conjecture but also
on the Deligne-Gross conjecture ([14] p. 323, Conjecture 2.7(ii)). However the ρ
which will be our primary focus happens to be realizable over Q, and for such ρ
one can dispense with the Deligne-Gross conjecture (see the proof of Proposition 2
of [30], p. 127). In any case, our goal is to present an example of a ρ, necessarily
of even dimension and trivial determinant, with the property that W (E, ρ) = 1 for
all elliptic curves E over Q, even though m(ρ) = 1.

Such examples are not new. For instance let Dn be the dihedral group of order
2n, and consider a Galois extension K of Q with Gal(K/Q) ∼= Dq ×Dr ×Ds ×Dt,
where q, r, s, and t are distinct primes > 5. Then for any faithful irreducible
representation ρ of Gal(K/Q) we have W (E, ρ) = 1 for all E over Q despite the
fact that m(ρ) = 1 (cf. [32], p. 313, Prop. D). However even with the minimal
choices of q, r, s, and t we are dealing with a group of order 24 ·5 ·7 ·11 ·13 = 80080
and a representation of dimension 16. These numbers are too big for us to obtain
a nonvacuity result comparable to part (i) of the following theorem:

Theorem 1. Let L and L′ be Galois extensions of Q with

Gal(L/Q) ∼= Gal(L′/Q) ∼= Q

and with relatively prime discriminants. Put K = LL′ and let ρ be the irreducible
four-dimensional representation of Gal(K/Q), unique up to isomorphism. Then
m(ρ) = 1 and the following assertions hold:

(i) There exists an elliptic curve E over Q such that ρ occurs in C ⊗ E(K).
In fact there exist infinitely many such elliptic curves with pairwise distinct
j-invariants.

(ii) W (E, ρ) = 1 for every elliptic curve E over Q.

In particular, if the Birch-Swinnerton-Dyer conjecture holds, then it follows that
〈ρ,E〉 is even for every elliptic curve E over Q and is positive for an infinite set of
E with distinct j-invariants.

Although Gal(LL′/Q) is isomorphic to Q × Q and is therefore of order 64, the
representation ρ factors through a quotient Gal(F/Q) of Gal(LL′/Q) of order 32.
In group-theoretic parlance and notation, Gal(F/Q) is the extraspecial group 21+4

+ .

More to the point, 21+4
+ is a minimal example of the phenomenon at issue: If ρ is

an irreducible self-dual representation of a finite group G such that dim ρ is even,
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det ρ is trivial, and m(ρ) = 1, then dim ρ > 4 and |G| > 32. Group-theoretically,
the holomorph of the cyclic group of order 8 is another minimal example, but I
don’t know whether one can prove a theorem similar to Theorem 1 for Hol(C8).

Let 1Q denote the one-dimensional trivial representation of Gal(Q/Q). Then
the rank of E(Q) coincides with 〈1Q, E〉, so it is easy to imagine an extension of
the minimalist conjecture: For any fixed irreducible Artin representation ρ of Q
we have 〈ρ,E〉 6 1 with probability 1. This conjecture would imply that the set
of elliptic curves figuring in part (i) of Theorem 1 is of density 0. But then the
average multiplicity of this ρ in an elliptic curve over Q would be 0, in contrast to
the average rank conjecture.

Be that as it may, the ingredients in the proof of Theorem 1 are as follows. For
part (i), we apply a recent theorem of Suresh [37] about the general realization
problem for Galois representations in Mordell-Weil groups of abelian varieties. The
first statement in (i) also follows from Matsuno [25] and from [33]. Part (ii) uses
the classification of groups of order 16 obtained about 130 years ago by Hölder [19]
and Young [42] (for a modern treatment see Wild [41], and for a helpful synopsis
see the online article “Groups of order 16” by Keith Conrad). Actually, as pointed
out by the referee, many of our group-theoretic arguments could be replaced simply
by references to online resources. In the end, however, (ii) is not a purely group-
theoretic statment but rather an application of the following well-known principle:

Theorem 2. Let ρ be an Artin representation of Q such that the restriction of ρ
to every decomposition subgroup of Gal(Q/Q) is symplectic. Then W (E, ρ) = 1 for
every elliptic curve E over Q.

The example of Dq × Dr × Ds × Dt mentioned above was treated in [32] by
combining the facts underlying Theorem 2 with an explicit formula for local root
numbers. By contrast, to prove Theorem 1 we use only Theorem 2. That Theorem 2
suffices may seem paradoxical, because the ρ in Theorem 1 is irreducible orthogonal
and therefore not itself symplectic. But it will turn out that the restriction of ρ to
a decomposition subgroup is always reducible, and a reducible representation can
be both orthogonal and symplectic. Indeed if σ is any representation of any group
and σ∨ is its dual then σ⊕ σ∨ is both orthogonal and symplectic, a fact which will
be used repeatedly in the proof of Theorem 1.

After proving Theorem 1 we will recall a criterion of Fröhlich [15] which makes it
easy to produce examples of pairs (L,L′) satisfying the hypotheses of the theorem.
We will also use Fröhlich’s criterion to show that in part (ii), the hypothesis that L
and L′ have relatively prime discriminants cannot simply be replaced by the weaker
hypothesis L ∩ L′ = Q.

We conclude this introduction with some conventions and notations to be used
throughout the paper. A representation of a finite group G is always a finite-
dimensional representation over C, and if G has just one isomorphism class of
irreducible representations of some dimension n then we will sometimes refer to
a member of that isomorphism class as the irreducible representation of G of di-
mension n. The center and commutator subgroup of G will be denoted Z(G) and
[G,G] respectively, and if ρ is an irreducible representation of G then the central
character of ρ, which is a homomorphism Z(G) → C×, will be denoted ωρ. An
involution is an element of order 2. The trivial one-dimensional representation of
G will be denoted 1G or simply 1, and if H is a subgroup of G then we write indGH
for the induction functor from representations of H to representations of G. If K
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is a fixed Galois extension of a number field M and K ⊃ L ⊃ M then instead of
writing indGH with G = Gal(K/M) and H = Gal(K/L) we often write indL/M , and
we may also write 1L for 1H .

I thank the referee for several insightful comments and for drawing my attention
to the website https://people.maths.bris.ac.uk/∼matyd/GroupNames/ and to the
wealth of information it contains.

1. First steps

We begin with the elementary group theory underlying the rest of the paper.
The textbook of Serre [35] is an excellent reference.

WriteQ = {±1,±i,±j,±k} with the usual relations ij = −ji = k, jk = −kj = i,
ki = −ik = j, i2 = j2 = k2 = −1, and (−1)2 = 1. Elements of the product Q×Q
will be written as ordered pairs (x, y), and the subgroup of order 2 generated by
(−1,−1) will be denoted R. The image of (x, y) in the quotient group

(2) G = (Q×Q)/R

will be denoted [x, y]. The following property of G is easily verified:

Proposition 1. The elements of order 4 in G are the elements of the form [±h, 1]
or [1,±h] with h ∈ {i, j, k}. All other nonidentity elements in G have order 2. In
particular, if g ∈ G is an element of order 4 then g2 = [−1, 1] = [1,−1].

Quite generally, if A and B are groups and α : A→ GL(U) and β : B → GL(V )
are representations of A and B on vector spaces U and V over C, then we write

α� β : A×B → GL(U ⊗ V )

for the representation given by the formula

(3) (α� β)(a, b) = α(a)⊗ β(b)

(a ∈ A, b ∈ B). In particular, let π be the irreducible two-dimensional repre-
sentation of Q and put ρ = π � π. Then ρ is an irreducible four-dimensional
representation of Q × Q and is the unique such representation up to isomorphism
(cf. [35], p. 27, Thm. 10). Since ωπ(−1) = −1 it follows that ρ(−1,−1) is trivial.
Therefore ρ factors through G, and we shall view ρ as a representation of Q×Q or
of G according to the convenience of the moment.

Proposition 2. The four-dimensional irreducible representation ρ is orthogonal,
with trivial determinant and Schur index one.

Proof. To see that ρ is orthogonal with det ρ = 1 we view ρ as a representation of
Q×Q. Then it is the tensor product π�π of two symplectic representations, hence
orthogonal, and since detπ is trivial, the triviality of det ρ follows from the formula

det(α⊗ β) = (detα)dim β(detβ)dimα

for α, β as in (3). As for m(ρ), view ρ as a representation of G. We prove below
(Proposition 5) that ρ occurs with multiplicity 1 in a representation induced by 1H
for a certain subgroup H of G. Therefore m(ρ) = 1. �

It is easily verified that Z(G) = {[1, 1], [−1, 1]} and that ωρ([−1, 1]) = −1. To
illustrate this remark we record a simple fact that will be needed later.

Proposition 3. Let J be a subgroup of G such that Z(J) contains an element of
order 4. Then ρ|J is symplectic.
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Proof. If g ∈ Z(J) is of order 4 then g2 = [−1, 1] by Proposition 1, whence ωρ(g
2) =

−1. It follows that if σ is an irreducible representation of J occurring in ρ|J then
ωσ(g2) = −1, so that ωσ(g) = ±i. Thus ωσ is not self-dual, and consequently
neither is σ. But ρ is self-dual, so ρ|J is self-dual also. Therefore the multiplicity
of σ in ρ|J is the same as the multiplicity of σ∨, whence ρ|J is a direct sum of
representations of the form σ ⊕ σ∨ and is therefore symplectic. �

The center and commutator subgroup of G coincide, just as they do for Q, so
the abelianization of G is

(4) G/Z(G) ∼= (Q×Q)/({±1} × {±1}) ∼= (Z/2Z)4.

The isomorphismG/Z(G) ∼= (Z/2Z)4 can be described explicitly as an identification
of G/Z(G) with the product of the groups of order 2 generated by the cosets of
[i, 1], [j, 1], [1, i], and [1, j] modulo Z(G). Equivalently, we have:

Proposition 4. The cosets of [i, i], [j, j], [i, 1], and [j, 1] modulo Z(G) are a basis
for G/Z(G) over Z/2Z.

Next observe that the elements of G of the form [h, h] with h ∈ {i, j, k} constitute
a set of pairwise commuting involutions. Indeed (h, h)2 = (−1,−1), and if h and
h′ are distinct elements of {i, j, k} then (h, h)(h′, h′) = (−1,−1)(h′, h′)(h, h). Let
H be the subgroup of G consisting of the three elements [h, h] with h ∈ {i, j, k}
together with the identity, and let Λ be the group of one-dimensional characters of
G which are trivial on H. It follows from Proposition 4 that Λ has order 4.

Proposition 5. indGH 1H ∼= ρ⊕ (⊕λ∈Λλ).

Proof. Since |H| = 4 and |Λ| = 4, both sides of the claimed equality have dimension
8. It suffices to see that each of the direct summands on the right-hand side occurs
in indGH 1H , for then it follows by dimension-counting that these summands all

occur with multiplicity one and collectively fill up indGH 1H . Applying Frobenius
reciprocity, we are reduced to proving that if ϕ is a direct summand on the right
then 1H occurs in ϕ|H. Now for λ ∈ Λ, the very definition of Λ ensures that 1H
equals λ|H. So it suffices to see that 1H occurs in ρ|H. This is a consequence of
the following poposition. �

Proposition 6. Let H be a subgroup of G of order 4 such that all nonidentity
elements of H are noncentral involutions. Then ρ|H is the regular representation
of H.

Proof. It suffices to to see that the characters of ρ|H and the regular representation
are equal:

(5) tr ρ[x, y] =

{
4 if [x, y] = 1

0 otherwise.

Only the second case requires proof. Any noncentral involution has the form [x, y]
with x, y ∈ {±i,±j,±k} (Proposition 1). Viewing ρ as a representation of Q×Q,
we have tr ρ(x, y) = tr (π(x) ⊗ π(y)). Since the trace of a tensor product is the
product of the traces and trπ(x) = 0 for x ∈ {±i,±j,±k}, we obtain tr ρ(x, y) =
trπ(x)trπ(y) = 0. �
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2. Realization in Mordell-Weil groups

We can now deduce part (i) of Theorem 1. Given Galois extensions L and L′ of Q
with comprime discriminants and with Gal(L/Q) ∼= Gal(L′/Q) ∼= Q, let K = LL′.
The coprimality of discriminants ensures that L ∩ L′ = Q so that

(6) Gal(K/Q) ∼= Gal(L/Q)×Gal(L′/Q) ∼= Q×Q.
While there are many ways to identify Gal(L/Q) and Gal(L′/Q) with Q, all iden-
tifications match −1 ∈ Q with the unique element of order 2 in Gal(L/Q) and
Gal(L′/Q). It follows that the subgroup R of Q × Q determines a subgroup of
order 2 in Gal(K/Q), so that if F is the corresponding fixed field then

(7) Gal(F/Q) ∼= (Q×Q)/R = G.

Furthermore, since we have identified Gal(L/Q) and Gal(L′/Q) with Q, it is natural
to write π and π′ for the respective irreducible two-dimensional representations of
Gal(L/Q) and Gal(L′/Q) and ρ for the tensor product of π and π′. If ρ is viewed
as a representation of Gal(K/Q) via (6) then the notation ρ = π � π′ is natural,
but if we think of π and π′ as representations of Gal(Q/Q) then we must write ρ =
π⊗π′. Either way, ρ is the irreducible four-dimensional representation of Gal(F/Q).
Finally, we can think of the set of elements [h, h] with h ∈ {i, j, k} as a well-defined
subset of Gal(F/Q), because (6) identifies Gal(L/Q) and Gal(L′/Q) with Q, hence
with each other. Thus we may regard H as a subgroup of G = Gal(F/Q). Let N
be the corresponding fixed field. Then Proposition 5 gives

indN/Q1N = ρ⊕ (⊕λ∈Λλ).

Since [F : Q] = 32 and [F : N ] = 4, we have [N : Q] = 8 and in particular
[N : Q] 6 10. Thus part (i) of Theorem 1 follows from Theorem 1.5 of Suresh [37].

3. Local root numbers

Before delving into the proof of part (ii) of Theorem 1, we recall some general
facts about root numbers, starting with the expression for the global root number
as a product of local root numbers. In particular, if E is any elliptic curve over Q
and ρ any Artin representation of Q then

(8) W (E, ρ) = W (E, ρ∞)
∏
p

W (E, ρp),

where p runs over prime numbers. We will not need the definition of the local
factors on the right-hand side, which can be found for example in [32], p. 329.
What we do need is the definition of ρp. Let F be a finite Galois extension of Q
such that ρ factors through Gal(F/Q). Given p, choose a place v of F above p, let
Fv be the completion of F at v, and identify Gal(Fv/Qp) with the decomposition
subgroup D of v in Gal(F/Q). Then ρp = ρ|D. This definition works also in the
case p =∞, where D = Gal(Fv/R) with Fv = R or Fv ∼= C.

The main fact needed here is that if ρp is symplectic then W (E, ρp) = 1 (see
part (iii) of Prop. 8 on p. 332 of [32]). Therefore Theorem 2 follows from (8), and
to prove part (ii) of Theorem 1 it suffices to show:

Theorem 3. If ρ is as in Theorem 1, then ρp is symplectic for all p 6∞.

But we do not specialize to the ρ in Theorem 1 immediately. Instead we start
with a simple but general remark:
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Proposition 7. Let ρ be a self-dual Artin representation of Q of even dimension
and trivial determinant. If ρ is unramified at p or if p =∞ then ρp is symplectic.

Since a decomposition group at an unramified prime or infinity is cyclic, the
proof of Proposition 7 reduces to an elementary fact:

Proposition 8. Let C be a finite cyclic group and ρ a self-dual representation of
C of even dimension and trivial determinant. Then ρ is symplectic.

Proof. Since ρ is self-dual, the multiplicity of a one-dimensional character χ of C in ρ
equals the multiplicity of χ−1. If C has odd order then χ 6= χ−1 for every nontrivial
character χ of C, and since dim ρ is even it follows that the trivial character 1C
has even multiplicity in ρ. Therefore ρ is symplectic. If C has even order then
we must check that both 1C and the unique quadratic character ν of C have even
multiplicity in ρ. If this is not the case then since dim ρ is even both 1C and ν have
odd multiplicity, whence det ρ = ν, contradicting our hypothesis. �

4. The classification

After these general remarks we return to a setting close to that of Theorem 1.
Thus G = (Q×Q)/R while F is a Galois extension of Q with Gal(F/Q) ∼= G. But
we do not yet assume the existence of a field K as in (6). Our goal is to find the
set of subgroups of G which can arise as decomposition subgroups.

If J is any finite group and p any prime number then we say that J is a Galois
group over Qp if J ∼= Gal(L/Qp) for some Galois extension L of Qp. If J is not a
Galois group over Qp for any p then in particular it is not a decomposition subgroup
of Gal(F/Q).

Proposition 9. G is not a Galois group over Qp for any p.

Proof. We have Q×p /Q×2
p
∼= (Z/2Z)ν with ν = 2 if p > 2 and ν = 3 if p = 2. Hence

by Kummer theory (Z/2Z)4 is not a Galois group over Qp. It follows that G itself
is not a Galois group over Qp, because G has a quotient isomorphic to (Z/2Z)4, as
we saw in (4). �

Thus any decomposition subgroup of Gal(F/Q) is a proper subgroup, so of order
dividing 16. Henceforth we denote the dihedral group of order 8 simply by D.

Proposition 10. Every proper subgroup of G is isomorphic to a subgroup of one
of the following groups:

(i) (Z/2Z)2 × Z/4Z
(ii) Qo Z/2Z

(iii) (Z/2Z)4

(iv) D × Z/2Z
In (ii), let r be the generator of Z/2Z. Then rxr−1 = ixi−1 for x ∈ Q.

Proof. A proper subgroup of a p-group is contained in a subgroup of index p. Hence
a proper subgroup of G is contained in a subgroup of order 16, and we may apply
the classification of groups of order 16: Up to isomorphism, there are exactly 14 of
them. But 6 of these groups have elements of order 8, so if we confine our attention
to possible subgroups of G then there are only 8 groups to consider. Four of these
groups are the 4 groups listed above, and the other 4 are the groups listed in the
next proposition, to which the proof of the present proposition now reduces. �
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Proposition 11. A subgroup of G of order 16 is not isomorphic to any of the
following groups:

(i) Z/4Z× Z/4Z
(ii) (Z/4Z) o (Z/4Z)
(iii) Q× Z/2Z
(iv) (Z/2Z)2 o (Z/4Z)

In (ii), the action of (Z/4Z) on (Z/4Z) is the unique nontrivial action, and in (iv),
a generator of Z/4Z sends an element (a, b) ∈ (Z/2Z)2 to (a+ b, b).

Proof. If g ∈ G has order 4 then g2 = [−1, 1] by Proposition 1. This remark rules
out the first two groups on the list, because if G has a subgroup of the form A×B
or A o B with A ∼= B ∼= Z/4Z then A and B both have the element [−1, 1] in
common, a contradiction.

Next suppose that G has a subgroup of the form A × B with A ∼= Q and
B ∼= Z/2Z. Then A contains two noncommuting elements of order 4. Applying
Proposition 1, and then using the fact that the map [x, y] 7→ [y, x] is an automor-
phism of G, we may assume that A contains [i, 1] and [j, 1]. Now let b be the
generator of B. Then b 6= [−1, 1], because [−1, 1] = [i, 1]2 ∈ A. So b has the form
[h, h′] with h, h′ ∈ {±i,±j,±k}. But no such [h, h′] commutes with both [i, 1] and
[j, 1], a contradiction.

Finally, suppose that G has a subgroup of the form AoB, where A ∼= (Z/2Z)2,
B ∼= Z/4Z, and B acts nontrivially on A. Then B contains an element of order 4,
and after appealing to Proposition 1 again and applying the automorphism [x, y] 7→
[y, x] if necessary, we may assume that B is generated by an element of the form
[h, 1] with h ∈ {i, j, k}. Since B acts nontrivially on A, there is an element [x, y] ∈ A
which does not commute with the generator [h, 1] of B, and the latter requirement
implies that x ∈ {i, j, k} but x 6= h. Then the element

[h, 1][x, y][h, 1]−1[x, y]−1 = [−1, 1]

belongs to A, a contradiction since [−1, 1] = [h, 1]2 ∈ B. �

5. Symplectic restrictions

To recapitulate, every decomposition subgroup D = Gal(Fv/Qp) of Gal(F/Q) is
contained in a subgroup J isomorphic to one of the four groups listed in Proposition
10. In each case we will show that ρ|D is symplectic, but we emphasize that in
cases (i) and (ii) of Proposition 10 our argument works in a setting that is slightly
more general than that of Theorem 1: Instead of starting with L and L′ as in the
theorem and defining F as a subfield of LL′ via (6) and (7), we start with a Galois
extension F of Q such that Gal(F/Q) ∼= G, and we define ρ up to isomorphism
as the irreducible four-dimensional representation of Gal(F/Q). However to treat
cases (iii) and (iv) we will need to use our assumption that F arises from L and L′

as in (6) and (7).
So suppose first that D = Gal(Fv/Qp) ⊂ J with J as in cases (i) or (ii) of

Proposition 10. To prove Theorem 3 in these cases it suffices to show that ρ|J is
symplectic, for then ρp = ρ|D is symplectic also.

Proposition 12. If J is a subgroup of G isomorphic to (Z/2Z)2 × Z/4Z or to
Qo Z/2Z then ρ|J is symplectic.
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Proof. We claim that Z(J) contains elements of order 4. If J ∼= (Z/2Z)2 × Z/4Z
this is obvious since Z(J) = J , and if J ∼= QoZ/2Z then a calculation shows that
i · r ∈ QoZ/2Z is central of order 4, where r is the generator of Z/2Z. An appeal
to Proposition 3 completes the proof. �

It remains to prove Theorem 3 in cases (iii) and (iv) of Proposition 10. From
now on we let L and L′ be as in Theorem 1 and we assume that F arises from
K = LL′ as indicated in (6) and (7). In the next proposition we use (6) and (7) to
identify Gal(F/Q) with G, writing Gal(F/Q) and G interchangeably.

Proposition 13. Let I be the inertia subgroup of Gal(F/Q) at some ramified prime
ideal of F . Then I contains Z(G) and is isomorphic to a subgroup of Q.

Proof. Let p be a prime ideal of F such that I is the inertia subgroup of Gal(F/Q)
at p. Let p be the prime number below p. Since p ramifies in F , it ramifies in
exactly one of L and L′, say in L. Let P be a prime ideal of K lying above p,
and let J ⊂ Gal(K/Q) be the inertia subgroup at P. Then J ⊂ Gal(K/L′). Since
Gal(K/F ) intersects Gal(K/L′) trivially, it follows that Gal(K/Q) → Gal(F/Q)
sends J isomorphically onto I. We now deduce the two assertions of the proposition
in reverse order.

First, since Gal(K/L′) is isomorphic to Q, its subgroup J is isomorphic to a
subgroup of Q. Hence so is I.

Second, identify Gal(K/Q) with Q×Q using (6). Then Gal(K/L′) = Q× {1},
whence J ⊂ Q×{1}. Since −1 is an element of every nontrivial subgroup of Q, we
have (−1, 1) ∈ J and [−1, 1] ∈ I. Thus Z(G) ⊂ I. �

To treat cases (iii) and (iv) of Proposition 10 we use the following lemma, appli-
cable to any finite group G and any irreducible self-dual representation ρ of G.

Lemma. Let C be a subgroup of G such that ρ|C is symplectic. Then ρ|Z(G)C is
symplectic also.

Proof. Let 〈∗, ∗〉 be a nondegenerate alternating form on the space of ρ which is
invariant under ρ|C. If z ∈ Z(G) and c ∈ C then for v and w in the space of ρ,

〈ρ(zc)(v), ρ(zc)(w)〉 = 〈ωρ(z)ρ(c)(v), ωρ(z)ρ(c)(w)〉,
which is equal to ωρ(z)

2〈ρ(c)(v), ρ(c)(w)〉 and therefore to 〈v, w〉. �

Proposition 14. Let D be a decomposition subgroup of Gal(F/Q) which is iso-
morphic to a subgroup of (Z/2Z)4. Then ρ|D is symplectic.

Proof. Let p be a prime ideal of F such that D is the decomposition subgroup of
Gal(F/Q) at p, and let I be the inertia subgroup at p. We may assume that I is
nontrivial, else we are done by Proposition 7. Then I is isomorphic to a nontrivial
subgroup both of (Z/2Z)4 and of Q (by Proposition 13) and therefore I ∼= Z/2Z.
Another appeal to Proposition 13 shows that I ⊃ Z(G) whence I = Z(G). Since
D is also isomorphic to a subgroup of (Z/2Z)4 and D/I is cyclic, we conclude that
either D = I = Z(G) or D = I ⊕ C = Z(G) ⊕ C with a subgroup C ∼= Z/2Z. In
the latter case ρ|C is symplectic by Proposition 8. The lemma then shows in both
cases that ρ|D is symplectic. �

The following proposition completes the proof of Theorem 3 and hence of part
(ii) of Theorem 1.



10 DAVID E. ROHRLICH

Proposition 15. Let D be a decomposition subgroup of Gal(F/Q) which is iso-
morphic to a subgroup of D × (Z/2Z). Then ρ|D is symplectic.

Proof. As in the proof of Proposition 14, we choose a prime ideal p such that D is
the decomposition subgroup of Gal(F/Q) at p, and we let I be the inertia subgroup.
By Proposition 7 we may assume that I is nontrivial. Then I contains Z(G) and is
isomorphic to Z/2Z, Z/4Z, or Q by Proposition 13. But Q is not isomorphic to a
subgroup of D× (Z/2Z) because the latter group has only two cyclic subgroups of
order 4. So I ∼= Z/2Z or I ∼= Z/4Z.

Suppose first that I ∼= Z/2Z. Since normal subgroups of order 2 are central and
D/I is cyclic it follows that D is abelian. Therefore D is either cyclic, whence ρ|D
is symplectic by Proposition 8, or D = I⊕C with C cyclic. In the latter case, since
I = Z(G) by Proposition 13, we have D = Z(G) ⊕ C, and ρ|C is symplectic by
Proposition 8. Hence ρ|D is symplectic by the lemma.

Now suppose that I ∼= Z/4Z. If D is abelian then an appeal to Proposition 3
completes the proof. So we may assume that D is nonabelian. As we have already
noted, D×(Z/2Z) has two cyclic subgroups of order 4, one contained in D×{1} and
one not contained in D×{1}. Either way, the corresponding quotient of D×(Z/2Z)
is isomorphic to (Z/2Z)2. But D/I is a subgroup of the quotient at issue and is also
cyclic, so D/I ∼= Z/2Z. Thus D has order 8. Since D is nonabelian either D ∼= Q
or D ∼= D. But Q is not a subgroup of D × (Z/2Z), so we conclude that D ∼= D.

Now let σ be an irreducible representation of D occurring in ρ|D. Since D ⊃ I ⊃
Z(G) and ωρ([−1, 1]) = −1, we have ωσ([−1, 1]) = −1 also. But the only irreducible
representation of D which is nontrivial on the center of D is the two-dimensional
one. Therefore σ is the unique two-dimensional irreducible representation of D,
whence ρ|D = σ ⊕ σ. Since σ is self-dual, ρ|D is symplectic. �

6. Fröhlich’s criterion

Following Fröhlich, we call a Galois extension L of Q a quaternion field if
Gal(L/Q) ∼= Q. Since the maximal abelian quotient of Q is isomorphic to (Z/2Z)2,
the maximal abelian subfield of L is a biquadratic field M , which we may refer to
as the biquadratic subfield of L since it is unique. Again following Fröhlich, we say
that L is a pure quaternion field if every prime which is ramified in L is ramified
already in M .

Now let us change perspective: Fix a biquadratic field M , and let d1 and d2

be the discriminants of two of the three quadratic subfields of M , so that M =
Q(
√
d1,
√
d2). Using the quadratic Hilbert symbol (∗, ∗)` on Q`, Fröhlich gives a

criterion for the existence of a pure quaternion field L with biquadratic subfield M :
Such an L exists if and only if

(9) (d1, d2)` · (d1,−1)` · (−1, d2)` = 1

for all primes `, including ` =∞. ([15], p. 146, Thm. 3). Note that the discriminant
of L is divisible by precisely the prime divisors of d1d2, because L is pure.

Fröhlich’s criterion makes it easy to produce pairs of quaternion fields with rela-
tively prime discriminants, as required in Theorem 1. For example, one can simply
apply the following proposition twice, the second time with p, q replaced by primes
p′, q′ distinct from p and q:

Proposition 16. Let p and q be distinct primes satisfying:
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(i) p ≡ q ≡ 1 (mod 4).

(ii)

(
p

q

)
= 1.

Then there is a pure quaternion field L with biquadratic subfield M = Q(
√
p,
√
q).

The proof is a straightforward exercise in properties of the Hilbert symbol; one
verifies (9) with d1 = p and d2 = q. However we would also like to show that the
comprimality of the discriminants of L1 and L2 in Theorem 1 cannot be replaced by
the weaker hypothesis of linear disjointness. The counterexample to be given in the
next section depends on the following variant of Proposition 16. The congruences
mod 8 in (i) below could be replaced by congruences mod 4, but the stronger
hypothesis leads to a speedier verification of the proposition.

Proposition 17. Let p, q, and r be distinct primes satisfying:

(i) p ≡ r ≡ 3 (mod 8) and q ≡ 1 (mod 8).

(ii)

(
p

q

)
=

(
r

q

)
= −1.

Then there is a pure quaternion field L with biquadratic subfield M = Q(
√
pr,
√
q),

and p has ramification index e = 4 and residue class degree f = 2 in L.

Proof. We verify (9) with d1 = pr and d2 = q. For a finite prime ` - 2pqr the three
factors on the left-hand side of (9) are individually equal to 1 because pr, q, and
−1 are in Z×` . For ` =∞ or `|2q the three factors are again 1 because pr and q are
squares in R, Q2, and Qq. It remains to check the cases ` = p and ` = r. Since p
and r play interchangeable roles it suffices to consider p. By quadratic reciprocity,
Qp(
√
q) is the unramified quadratic extension of Qp, whence (pr, q)p = −1. But

Qp(
√
−1) is likewise the unramified quadratic extension of Qp, so (pr,−1)p = −1

also. Finally since Qp(
√
−1) is unramified over Qp and q ∈ Z×p , it follows that

(−1, q)p = 1. So (9) holds for ` = p and therefore for all `. Thus L exists.
As for the ramification index e and residue class degree f , it suffices to verify

that 4|e and 2|f , for then 8|ef , and as [L : Q] = 8 the divisibilities are equalities.
Since p is ramified in Q(

√
rp), the inertia subgroup I ⊂ Gal(L/Q) of a prime ideal

of L above p is not contained in Z(Q). But any noncentral element of Q has order
4, so I has order divisible by 4, and 4|e. Finally, since q is a nonresidue mod p by
quadratic reciprocity, p is inert in Q(

√
q), so 2|f . �

7. A counterexample

Fix a prime p ≡ 3 mod 8, and choose two primes q and q′, distinct from each
other and from p, satisfying q ≡ q′ ≡ 1 mod 8 and(

p

q

)
=

(
p

q′

)
= −1.

Such q and q′ exist by the Chinese remainder theorem, because the conditions on
the Legendre symbols amount to congruences mod p. Finally, choose primes r and
r′, distinct from each other and from p, q, and q′, satisfying r ≡ r′ ≡ 3 mod 8 and(

r

q

)
=

(
r′

q

)
= −1.
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Applying Proposition 17, we obtain pure quaternion fields L and L′ with biquadratic
subfields M = Q(

√
pr,
√
q) and M ′ = Q(

√
pr′,
√
q′) such that p has ramification

index 4 and residue class degree 2 in each of L and L′.

Proposition 18. L ∩ L′ = Q.

Proof. If L ∩ L′ is not Q then it contains a quadratic subfield of L, so one of the
three fields Q(

√
d) with d = pr, d = q, or d = pqr. But none of these fields is

contained in L′, contradiction. �

Let K = LL′. Then Gal(K/Q) ∼= Gal(L/Q) × Gal(L′/Q) by Proposition 18,
and consequently Gal(K/Q) can be identified with Q × Q as in (6). Then F
can be defined as the fixed field of R as in (7). Given these identifications, we
shall continue to write (x, y) and [x, y] for elements of Gal(K/Q) and Gal(F/Q)
respectively, and we shall view the four-dimensional irreducible representation ρ of
G as a representation of Gal(F/Q).

Proposition 19. Let D ⊂ Gal(F/Q) be the decomposition subgroup of a prime
ideal of F above p. Then D ∼= (Z/2Z)2 and ρp is the regular representation of D.

Proof. When Gal(K/Q) is identified with Q×Q, M is the fixed field of {±1} ×Q
and M ′ is the fixed field of Q× {±1}. Since F is the fixed field of {1, (−1,−1)}, it
follows that F contains M and M ′ and that the kernel of the restriction map from
Gal(F/Q) to Gal(M/Q) and from Gal(F/Q) to Gal(M ′/Q) consists of elements of
the form [±1, y] and [x,±1] respectively.

Let p be a prime ideal of F above p such that D is the decomposition subgroup
of p, and let I ⊂ D be the inertia subgroup. Since p is odd, the ramification
at p is tame, and consequently I is cyclic. Let [x, y] be a generator. Since the
restriction map of Gal(F/Q) onto Gal(M/Q) and Gal(M ′/Q) sends I onto the
inertia subgroups of Gal(M/Q) and Gal(M ′/Q) at p ∩M and p ∩M ′ respectively,
and since the latter inertia subgroups are nontrivial, we have x 6= ±1 and y 6= ±1.
Therefore [x, y] is a noncentral involution (Proposition 1).

Next let [h, h′] ∈ Gal(F/Q) be a Frobenius element at p. Again, [h, h′] restricts
to Frobenius elements in Gal(M/Q) and Gal(M ′/Q) at p∩M and p∩M ′, and the
latter Frobenius elements are nontrivial because p is inert in Q(

√
q) and Q(

√
q′). It

follows that h, h′ 6= ±1, so that [h, h′] is also a noncentral involution, as is [xh, yh′],
since it too is a Frobenius element at p.

To summarize, I is a normal subgroup of order 2 in D, hence central, and D/I
is cyclic, so that D is abelian. Since the coset of [h, h′] generates D/I but [h, h′]
is itself of order 2, we conclude that D ∼= (Z/2Z)2, and since the 3 nonidentity
elements of D are noncentral involutions, we see from Proposition 6 that ρ|D is the
regular representation of D. �

There is a unique biquadratic extension of Qp, namely the compositum of the
unique unramified quadratic extension and either of the two ramified extensions.
This biquadratic extension coincides with Mv, the completion of M at the place
above p. Hence we can rephrase Proposition 19 as follows:

Corollary. The decomposition subgroup D of Gal(F/Q) at a prime ideal of F above
p coincides with Gal(Mv/Qp), and ρp is the direct sum of the four one-dimensional
characters of Gal(Mv/Qp).
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Now we show that F gives a counterexample to part (ii) of Theorem 1 when
coprimality of the discriminants of L and L′ is replaced by mere linear disjointness
over Q:

Proposition 20. There are infinitely many numbers j ∈ Q such that there is an
elliptic curve Ej of invariant j with W (Ej , ρ) = −1.

Proof. As is well known, for any j ∈ Qr {0, 1728}, the equation

(10) y2 + xy = x3 − 36x

j − 1728
− 1

j − 1728

defines an elliptic curve Ej over Q with modular invariant j, and the discriminant
of (10) is ∆ = j2/(j − 1728)3. Consider numbers j of the form j = 1728− (pm)−1,
where m runs over integers relatively prime to qq′rr′ satisfying 1728pm 6≡ 1 mod `
for ` = q, q′, r, r′. Then (10) becomes

(11) y2 + xy = x3 + 36pmx+ pm,

an equation over Z with discriminant ∆ = −pm(1728pm− 1)2. Thus Ej has good
reduction at q, q′, r, and r′. And since L and L′ are pure quaternion fields, a prime
` ramifies in F only if `|pqq′rr′.

To compute W (Ej , ρ) we apply a general principle, partially incorporated into
Proposition 7: If E is any elliptic curve over Q and ρ is any self-dual Artin represen-
tation of Q of even dimension and trivial determinant then the local root number
W (E, ρ`) is 1 unless ` <∞ and ` is a bad prime for both E and ρ. In other words,
W (E, ρ`) = −1 only if E has bad reduction at ` and ρ is ramified at ` (cf. [32],
p. 332, Proposition 8, parts (i) and (ii)). In the case at hand, ρ is unramified at
all ` - pqq′rr′ and Ej has good reduction at all `|qq′rr′, so W (Ej , ρ) = W (Ej , ρp).
Since Ej has potentially multiplicative reduction at p and ρp is the direct sum of
the four one-dimensional characters of Gal(Mv/Qp), we have W (Ej , ρp) = −1 by
[32], p. 329, Theorem 2, part (ii). �
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