Dynamical Systems Seminars

Spring 2017

The Dynamical Systems seminar is held on Monday afternoons at 4:00 PM in MCS 148. Tea beforehand is at 3:45 PM in MCS 144.

- January 23: Mike Todd (St Andrews)

Title: Stability of measures in interval dynamics

Abstract: Given a family of interval maps, each map possessing a `physical' measure (an invariant measure absolutely continuous w.r.t. Lebesgue), we have a weak form of stability if these measures change continuously through the family. Even for uniformly hyperbolic dynamical systems this stability can fail. I†¢ll give minimal conditions for a class of non-uniformly hyperbolic interval maps to satisfy this stability property. This work forms part of a paper with Neil Dobbs, where more general thermodynamic properties are proved to be stable (entropy, pressure, equilibrium states), and I†¢ll give some indication of the general approach there. - January 30: Eric Chang (BU)

Title: The Sierpinski Mandelbrot spiral for the rational map

Abstract: We investigate the parameter plane for the family of maps \(F(z) = z^n + \lambda/z^d\) where \(n \geq 4\) is even, \(d \geq 3\) is odd, and \(\lambda\) is a complex parameter. Concentrating on \(F(z) = z^4 + \lambda / z^3\), we prove the existence of two structures in the parameter plane: a Sierpinski Mandelbrot arc consisting of infinitely many alternating Sierpinski holes and Mandelbrot sets, as well as a Sierpinski Mandelbrot spiral consisting of infinitely many SM arcs. We also show that there are infinitely many SM spirals in the parameter plane. - February 6: Osman
Chaudhary (BU)

Title: Rigorous Justification of Taylor Dispersion via Center Manifold Theory

Abstract: Imagine fluid moving through a long pipe or channel, and we inject dye or solute into this pipe. Initially, the dye just moves along downstream with the fluid. However, it is also slowly diffusing down the pipe and towards the edges as well. It turns out that after a long time, the combined effect of transport via the fluid and this slow diffusion results in what is effectively a much more rapid diffusion process, lengthwise down the stream. If 0 < \nu << 1 is the slow diffusion coefficient, then the effective longitudinal diffusion coefficient is inversely proportional to \nu, i.e. much larger. This phenomenon is called Taylor Dispersion, first studied by GI Taylor in the 1950s, and studied subsequently by many authors since, such as Aris, Chatwin, Smith, Roberts, and others. I'll propose a dynamical systems explanation of this phenomenon: specifically, I'll explain how one can use a Center Manifold reduction to obtain Taylor Dispersion as the dominant term in the long-time limit, and also explain how this Center Manifold can be used to provide any finite number of correction terms to Taylor Dispersion as well. - February 13: No seminar planned; please consider attending the workshop at ICERM on
The Dynamics of Small Scale Fluids.
- February 20: Holiday, No Seminar
- February 27: Alanna Hoyer-Leitzel (Mount Holyoke)

Title: Existence, stability, and symmetry of relative equilibria with a dominant vortex

Abstract: We will consider the problem of point vortices in the plane from the perspective of Hamiltonian systems, in particular we will analyze existence, stability, and symmetry of point vortex relative equilibria with one dominant vortex and N vortices with infinitesimal circulations. Previous results for the problems of existence and stability focused on the case where the N small vortices had the same circulation. In this talk, I'll present a new proof to generalize to the case where the N vortices can have different circulations, and then apply these results to find examples of stable asymmetric relative equilibria in the case when N=3. We'll also see the use of some computational algebraic geometry to find bifurcations in families of relative equilibria when N=3, and some beginning analysis for N=4. - March 6: Spring Break, No Seminar
- March 13: TBA

Title: TBA

Abstract: TBA - March 20: No seminar planned; please consider attending the workshop at
ICERM on Making a Splash - Droplets, Jets and Other Singularities.
- March 27: Patrick Cummings (BU)

Title: TBA

Abstract: TBA - April 3: Noé Cuneo (McGill)

Title: TBA

Abstract: TBA - April 10: Darko Volkov (WPI)

Title: TBA

Abstract: TBA - April 17: Holiday, No Seminar

- April 24: No seminar planned; please consider attending the workshop at
ICERM on Water Waves.

- May 1: Maxim
Olshanii (UMass Boston)

Title: The Inverse Linearization Problem

Abstract: We investigate the relationship between the nonlinear partial differential equations (PDEs) of mathematical physics and the their linearizations around localized stationary solutions. It turns out that for some classes of PDEs, it is possible to solve the Inverse Linearization Problem, i.e. given the linearization, to restore the original PDE. Of a particular interest are the instances of transparency of the former that are shown to hint on the possible integrability of the latter.

### Directions to BU Math Dept.

### Speakers from previous years